327 resultados para Scale-free network
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such microcalibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, lane distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such micro-calibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, land distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.
Resumo:
The next-generation of service-oriented architecture (SOA) needs to scale for flexible service consumption, beyond organizational and application boundaries, into communities, ecosystems and business networks. In wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt and expose services. Those services can then be discovered, ordered, consumed, metered and paid for, through new applications and opportunities, driven by third-parties in the global “village”. This trend is already underway, in different ways, through different early adopter market segments. This paper proposes an architectural strategy for the provisioning and delivery of services in communities, ecosystems and business networks – a Service Delivery Framework (SDF). The SDF is intended to support multiple industries and deployments where a SOA platform is needed for collaborating partners and diverse consumers. Specifically, it is envisaged that the SDF allows providers to publish their services into network directories so that they can be repurposed, traded and consumed, and leveraging network utilities like B2B gateways and cloud hosting. To support these different facets of service delivery, the SDF extends the conventional service provider, service broker and service consumer of the Web Services Architecture to include service gateway, service hoster, service aggregator and service channel maker.
Resumo:
The increasingly widespread use of large-scale 3D virtual environments has translated into an increasing effort required from designers, developers and testers. While considerable research has been conducted into assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. In the work presented in this paper, two novel neural network-based approaches are presented to predict the correct visualization of 3D content. Multilayer perceptrons and self-organizing maps are trained to learn the normal geometric and color appearance of objects from validated frames and then used to detect novel or anomalous renderings in new images. Our approach is general, for the appearance of the object is learned rather than explicitly represented. Experiments were conducted on a game engine to determine the applicability and effectiveness of our algorithms. The results show that the neural network technology can be effectively used to address the problem of automatic and reliable visual testing of 3D virtual environments.
Resumo:
Purpose - This paper seeks to understand the impact of financial cost on customer value in health prevention services by comparing free government services with private fee-charging providers. This is important as there is a common belief that a free health service is of lower quality and thus lower value than a paid service. However there is no evidence to verify this notion. Design / Methodology / Approach - A large-scale online survey was administered nationwide to Australian women. The respondents were asked about the functional and emotional value derived from their service experiences. Findings - Structural equation modelling (SEM) revealed non significant relationships between fee/free services and functional and emotional value (FV/EV). The non-significant relationship with FV is contrary to the theory of price quality relationship in services. This could be attributed to consumer perceptions that the technical quality of health professionals is comparable across free and paid services. The non-significant relationship with EV could be explained by the indicators used to reflect EV. These indicators were reflective of breast screening behaviour, not breast screening services. Subsequently, it may be posited that the act of having a breast screen is sufficient for consumers to derive emotional value, regardless of the financial cost. Originality / Value - This research fills an important gap in the literature by investigating the impact of financial cost on a service that consumers use proactively(prevention), rather than reactively (treatment). Insights are provided into the impact of cost on customer value in preventive health services, which are valuable to social marketing academics, health practitioners, and governments
Importance of a resilient air services network to Australian remote, rural, and regional communities
Resumo:
Rural, regional, and remote settlements in Australia require resilient infrastructure to remain sustainable in a context characterized by frequent large-scale natural disasters, long distances between urban centers, and the pressures of economic change. A critical aspect of this infrastructure is the air services network, a system of airports, aircraft operators, and related industries that enables the high-speed movement of people, goods, and services to remote locations. A process of deregulation during the 1970s and 1980s resulted in many of these airports passing into local government and private ownership, and the rationalization of the industry saw the closure of a number of airlines and airports. This paper examines the impacts of deregulation on the resilience of air services and the contribution that they make to regional and rural communities. In particular, the robustness, redundancy, resourcefulness, and rapidity of the system are examined. The conclusion is that while the air services network has remained resilient in a situation of considerable change, the pressures of commercialization and the tendency to manage aspects of the system in isolation have contributed to a potential decrease in overall resilience.
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
We present a virtual test bed for network security evaluation in mid-scale telecommunication networks. Migration from simulation scenarios towards the test bed is supported and enables researchers to evaluate experiments in a more realistic environment. We provide a comprehensive interface to manage, run and evaluate experiments. On basis of a concrete example we show how the proposed test bed can be utilized.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
An experiment in large scale, live, game design and public performance, bringing together participants from across the creative arts to design, deliver and document a project that was both a cooperative learning experience and an experimental public performance. The four month project, funded by the Edge Digital Centre, culminated into a 24 hour ARG event involving over 100 participants in December 2012. Using the premise of a viral outbreak, young enthusiasts auditioned for the roles of Survivor, Zombie, Medic and Military. The main objective was for the Survivors to complete a series of challenges over 24 hours, while the other characters fulfilled their opposing objectives of interference and sabotage supported by both scripted and free-form scenarios staged in constructed scenes throughout the venues. The event was set in the State Library of Queensland and the Edge Digital Centre who granted the project full access, night and day to all areas including public, office and underground areas. These venues were transformed into cinematic settings full of interactive props and various audio-visual effects. The ZomPoc Project was an innovative experiment in writing and directing a large scale, live, public performance, bringing together participants from across the creative industries. In order to design such an event a number of innovative resources were developed exploiting techniques of game design, theatre, film, television and tangible media production. A series of workshops invited local artists, scientists, technicians and engineers to find new ways of collaborating to create networked artifacts, experimental digital works, robotic props, modular set designs, sound effects and unique costuming guided by an innovative multi-platform script developed by Deb Polson. The result of this collaboration was the creation of innovative game and set props, both atmospheric and interactive. Such works animated the space, presented story clues and facilitated interactions between strangers who found themselves sharing a unique experience in unexpected places.
Resumo:
Major imperfections in crosslinked polymers include loose or dangling chain ends that lower the crosslink d., thereby reducing elastic recovery and increasing the solvent swelling. These imperfections are hard to detect, quantify and control when the network is initiated by free radical reactions. As an alternative approach, the sol-gel synthesis of a model poly(ethylene glycol) (PEG-2000) network is described using controlled amts. of bis- and mono-triethoxy silyl Pr urethane PEG precursors to give silsesquioxane (SSQ, R-SiO1.5) structures as crosslink junctions with a controlled no. of dangling chains. The effect of the no. of dangling chains on the structure and connectivity of the dried SSQ networks has been detd. by step-crystn. differential scanning calorimetry. The role that micelle formation plays in controlling the sol-gel PEG network connectivity has been studied by dynamic light scattering of the bis- and mono-triethoxy silyl precursors and the networks have been characterized by 29Si solid state NMR, sol fraction and swelling measurements. These show that the dangling chains will increase the mesh size and water uptake. Compared to other end-linked PEG hydrogels, the SSQ-crosslinked networks show a low sol fraction and high connectivity, which reduces solvent swelling, degree of crystallinity and the crystal transition temp. The increased degree of freedom in segment movement on the addn. of dangling chains in the SSQ-crosslinked network facilitates the packing process in crystn. of the dry network and, in the hydrogel, helps to accommodate more water mols. before reaching equil.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.