68 resultados para Roughness.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, synthetic biodegradable polymers, such as aliphatic polyesters, are largely used in tissue engineering. They provide several advantages compared to natural materials which use is limited by immunocompatibility, graft availability, etc. In this work, poly(L-lactic) acid (PLLA), poly(DL-lactic) acid (PDLA), poly-epsilon-caprolactone (PCL), poly(L-lactic)-co-caprolactone (molar ratio 70/30) (PLCL) were selected because of their common use in tissue engineering. The membranes were elaborated by solvent casting. Membrane morphology was investigated by atomic force microscopy. The membranes were seeded with human fibroblasts from cell line CRL 2703 in order to evaluate the biocompatibility by the Alamar blue test. The roughness of the membranes ranged from 4 nm for PDLA to 120 nm and they presented very smooth surface except for PCL which beside a macroscopic structure due to its hydrophobicity. Human fibroblasts proliferated over 28 days on the membranes proving the non-in vitro toxicity of the materials and of the processing method. A further step will be the fabrication of three-dimensional scaffold for tissue engineering and the treatment of the scaffolds to augment cell adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical formation of highly porous CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and CuTCNQF4 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) materials was undertaken via the spontaneous redox reaction between a porous copper template, created using a hydrogen bubbling template technique, and an acetonitrile solution containing TCNQ or TCNQF4. It was found that activation of the surface via vigorous hydrogen evolution that occurs during porous copper deposition and TCNQ mass transport being hindered through the porous network of the copper template influenced the growth of CuTCNQ and CuTCNQF4. This approach resulted in the fabrication of a honeycomb layered type structure where the internal walls consist of very fine crystalline needles or spikes. This combination of microscopic and nanoscopic roughness was found to be extremely beneficial for anti-wetting properties where superhydrophobic materials with contact angles as high as 177° were created. Given that CuTCNQ and CuTCNQF4 have shown potential as molecular based electronic materials in the area of switching and field emission, the creation of a surface that is moisture resistant may be of applied interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30nm) of thickness 130nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some initial EUVL patterning results for polycarbonate based non-chemically amplified resists are presented. Without full optimization the developer a resolution of 60 nm line spaces could be obtained. With slight overexposure (1.4 × E0) 43.5 nm lines at a half pitch of 50 nm could be printed. At 2x E0 a 28.6 nm lines at a half pitch of 50 nm could be obtained with a LER that was just above expected for mask roughness. Upon being irradiated with EUV photons, these polymers undergo chain scission with the loss of carbon dioxide and carbon monoxide. The remaining photoproducts appear to be non-volatile under standard EUV irradiation conditions, but do exhibit increased solubility in developer compared to the unirradiated polymer. The sensitivity of the polymers to EUV light is related to their oxygen content and ways to increase the sensitivity of the polymers to 10 mJ cm-2 is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model is developed for the analysis of piston secondary motion. Based on this model, the slap force of a specific L6 diesel engine was compared when considering different boundary conditions, such as lubricating oil on cylinder liner, surface roughness, deformation of cylinder liner and piston skirt. It is concluded that it is necessary to consider the secondary motion of piston in the analysis of the inner excitation for an internal combustion engine. A more comprehensive consideration of the boundary condition (i.e., more close to the actual condition) will lead to a smaller maximum slap force, and among all boundary conditions considered in this paper, the structural deformation of the piston skirt and cylinder liner is the most influential factor. The theoretical model developed and findings obtained in this study will benefit the future analysis and design of advanced internal combustion engine structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.