37 resultados para Rock Blasting
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
Students with disruptive behaviour in the Australian state of New South Wales are increasingly being educated in separate “behaviour” schools. There is however surprisingly little research on how students view these settings, or indeed the mainstream schools from which they were excluded. To better understand excluded students’ current and past educational experiences, we interviewed 33 boys, aged between 9 and 16 years of age, who were enrolled in separate special schools for students with disruptive behaviour. Analyses reveal that the majority of participants began disliking school in the early years due to difficulties with school work and teacher conflict. Interestingly, while most indicated that they preferred the behaviour school, more than half still wanted to return to their old school. It is therefore clear that separate special educational settings are not a solution to disruptive behaviour in mainstream schools. Whilst these settings do fulfil a function for some students, the preferences of the majority of boys suggest that “mainstream” school reform is of first order importance.
Resumo:
The use of geotextiles in coastal structures such as revetments and bund walls has become a common practice. The performance of these structures during their lifetime depends on the durability of geotextile used. During construction of these coastal structures, geotextiles are subjected to a drop load with high impact stress and that can damage the geotextile. In the current design practice, index tests are insufficient in predicting the performance of the geotextile. This puts the stability and performance of the coastal structures at risk. The current geotextile design guidelines are based on index tests and there is no standard procedure to account for the potential loss in the geotextile’s mechanical properties during installation (construction).This study aims to develop a standard procedure to estimate the properties of geotextile after its installation and using these properties for designing the performance of these structures. This paper describes the laboratory method of simulating large scale rock dumping on non-woven geotextiles and how to quantify the retained strength of damaged geotextiles. Results show that the reduction in retained strength of geotextile could extent up to 26% during installation.
Resumo:
Entrepreneurial education is the process of providing individuals with the ability to recognise commercial opportunities and the insight, self-esteem, knowledge and skills to act on them. It includes instruction in opportunity recognition, commercialising a concept, marshalling resources in the face of risk, and initiating a business venture. It also includes instruction in traditional business disciplines such as management, marketing, information systems and finance. The purpose of this paper is to describe the design and introduction of a new program in Entrepreneurship at the University of Tasmania. Rather than adopt a traditional business school (passive learning) approach, within this program the method and responsibility of learning has largely been reversed through the process of student centred learning. This method of learning represents a challenging departure from the traditional mainstream teaching practices. In considering the benefits achievable from this teaching method, this paper also considers the difficulties in transferring increased responsibility to students to manage their futures.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.