153 resultados para Rivero, Atanasio, d. 1930
Resumo:
This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds
Resumo:
Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using Af-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90 were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt of NVP absorbed 40 of water. As the amount of NVP was increased from 30 to 50 wt , the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.
Resumo:
Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.
Resumo:
In Queensland, Australia, the ultraviolet (UV) radiation levels are high (greater than UV Index 3) almost all year round. Although ambient UV is about three times higher in summer compared to winter, Queensland residents receive approximately equal personal doses of UV radiation within these seasons (Neale et al., 2010). Sun protection messages throughout the year are thus essential (Montague et al., 2001), need to reach all segments of the population, and should incorporate guidelines for maintenance of adequate vitamin D levels. Knowledge is an essential requirement to allow people to make health conscious decisions. Unprompted knowledge commonly requires a higher level of awareness or recency of acquisition compared to prompted recall (Waller et al., 2004). This paper thus reports further on the data from a 2008 population-based, cross-sectional telephone survey conducted in Queensland, Australia (2,001 participants; response rate=45%) (Youl et al., 2009). It was the aim of this research to establish the level of, and factors predicting, unprompted and prompted knowledge about health and vitamin D.
Resumo:
Poly(D,L-lactide) is a degradable polymer with a long history of use in medical applications. It is strong and stiff and degrades over the course of months into lactic acid, a body-own substance. In the field of tissue engineering it is commonly used to fabricate scaffolds. Stereolithography is a high resolution rapid prototyping technique by which designed 3D objects can be built using photo-initiated radical polymerisations. Poly(D,Llactide) (PDLLA) networks can be obtained by photopolymerisation of oligomers functionalised with unsaturated groups. In this work, PDLLA oligomers of varying architectures (arm lengths, numbers of arms) were synthesised and end-functionalised with methacrylate groups. These macromers were photo-crosslinked in solution to yield PDLLA networks of different architectures. The influence of the network architecture on its physical properties was studied.
Resumo:
Hydroxyapatite (HAP) is a major component of bone and has osteoconductive and -inductive properties. It has been successfully applied as a substrate in bone tissue engineering, either with or without a biodegradable polymer such as polycaprolactone or polylactide. Recently, we have developed a stereolithography resin based on poly(D,L-lactide) (PDLLA) and a non-reactive diluent, that allows for the preparation of tissue engineering scaffolds with designed architectures. In this work, designed porous composite structures of PDLLA and HAP are prepared by stereolithography.
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
This paper discusses a current research project building new understandings and knowledge relevant to R&D funding strategies in Australia. Building on a retrospective analysis of R&D trends and industry outcomes, an industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve research investment effectiveness. The project will also include analysis of research team formation and management (involving end users from public and private sectors together with research and knowledge institutions), and dissemination of outcomes and uptake in the Australian building and construction industry. The project will build on previous research extending open innovation system theory and network analysis and procurement, focused on R&D. Through the application of dynamic capabilities and strategic foresighting theory, an industry roadmap for future research investment will be developed, providing a stronger foundation for more targeted policy recommendations. This research will contribute to more effective construction processes in the future through more targeted research funding and more effective research partnerships between industry and researchers.
Resumo:
This paper describes a lead project currently underway through Australia’s Sustainable Built Environment National Research Centre, evaluating impacts, diffusion mechanisms and uptake of R&D in the Australian building and construction industry. Building on a retrospective analysis of R&D trends and industry outcomes, a future-focused industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve investment effectiveness. In particular, this research will evaluate national R&D efforts to develop, test and implement advanced digital modelling technologies into the design/construction/asset management cycle. This research will build new understandings and knowledge relevant to R&D funding strategies, research team formation and management (with involvement from public and private sectors, and research and knowledge institutions), dissemination of outcomes and uptake. This is critical due to the disaggregated nature of the industry, intense competition, limited R&D investment; and new challenges (e.g. digital modelling, integrated project delivery, and the demand for packaged services). The evaluation of leading Australian and international efforts to integrate advanced digital modelling technologies into the design/construction/asset management cycle will be undertaken as one of three case studies. Employing the recently released Australian Guidelines for Digital Modelling developed with buildingSMART (International Alliance for Interoperability) and the Australian Institute of Architects, technical and business benefits across the supply chain will be highlighted as drivers for more integrated R&D efforts.
Resumo:
The current global economic climate has focused the attention of construction practitioners on the benefits that applied research can deliver to their business. This paper draws on the history, achievements and lessons of the Australian CRC for Construction Innovation—the first national R&D and implementation centre servicing Australia’s built environment industry. It then explores the model of its planned successor - the Sustainable Built Environment Centre as industry, government and research stakeholders seek a stronger engagement in a more environmentally, socially and economically sustainable future.