72 resultados para Rings
Resumo:
Proteasomes are cylindrical particles made up of a stack of four heptameric rings. In animal cells the outer rings are made up of 7 different types of alpha subunits and the inner rings are composed of 7 out of 10 possible different beta subunits. Regulatory complexes can bind to the ends of the cylinder.We have investigated aspects of the assembly, activity and subunit composition of core proteasome particles and 26S proteasomes, the localization of proteasome subpopulations, and the possible role of phosphorylation in determining proteasome localization, activities and association with regulatory components.
Resumo:
The proteasome (multicatalytic proteinase complex) is a large multimeric complex which is found in the nucleus and cytoplasm of eukaryotic cells. It plays a major role in both ubiquitin-dependent and ubiquitin-independent nonlysosomal pathways of protein degradation. Proteasome subunits are encoded by members of the same gene family and can be divided into two groups based on their similarity to the c~ and /3 subunits of the simpler proteasome isolated from Thermoplasma acidophilum. Proteasomes have a cylindrical structure composed of four rings of seven subunits. The 26S form of the proteasome, which is responsible for ubiquitin-dependent proteolysis, contains additional regulatory complexes. Eukaryotic proteasomes have multiple catalytic activities which are catalysed at distinct sites. Since proteasomes are unrelated to other known proteases, there are no clues as to which are the catalytic components from sequence alignments. It has been assumed from studies with yeast mutants that /3-type subunits play a catalytic role. Using a radiolabelled peptidyl chloromethane inhibitor of rat liver proteasomes we have directly identified RC7 as a catalytic component. Interestingly, mutants in Prel, the yeast homologue of RC7, have already been reported to have defective chymotrypsin-like activity. These results taken together confirm a direct catalytic role for these/3-type subunits. Proteasome activities are sensitive to conformational changes and there are several ways in which proteasome function may be modulated in vivo. Our recent studies have shown that in animal cells at least two proteasome subunits can undergo phosphorylation, the level of which is likely to be important for determining proteasome localization, activity or ability to form larger complexes. In addition, we have isolated two isoforms of the 26S proteinase.
Resumo:
In the structure of the title salt 2C7H10N+.C8H2Cl2O4(2-) .H2O the two benzylaminium anions have different conformations, one being essentially planar the other having the side-chain rotated out of the benzene plane (minimum ring to side-chain C-C-C-N torsion angles = -3.6(6) and 50.1(5)\%, respectively). In the 4,5-dichlorophthalate dianion the carboxyl groups make ihedral angles of 23.0(2) and 76.5(2)\% with the benzene ring. Aminium N-H...O and water O-H...O hydrogen-bonding associations with carboxyl O-atom acceptors give a two-dimensional duplex sheet structure which extends along the (011) plane. Weak pi-pi interactions are also present between the benzene ring and one of the cation rings [minimum ring centroid separation = 3.749(3)Ang.
Resumo:
In the structure of the title compound C14H9Cl3I2, which is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], isomorphism between the two compounds has been confirmed. In the molecule the dihedral angle between the planes of the two phenyl rings is 65.8(4)deg. which compares with 64.7(7)deg. in DDT.
Resumo:
In the structure of the title compound C22H27Cl302, which is the p-butoxyphenyl analogue of the insecticidally active p-methoxyphenyl compound methoxychlor, the dihedral angle between the two phenyl rings is 79.61(11)deg. Present also in the structure is an intramolecular aromatic C-H...Cl interaction [3.361(2)Ang].
Resumo:
The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.
Resumo:
In the title compound, C18H19Cl3O2, which is the 4-ethoxyphenyl analogue of the insecticidally active 4-methoxyphenyl compound methoxychlor, the dihedral angle between the two benzene rings is 60.38(13)deg. An intramolecular aromatic C-H...Cl interaction is present.
Resumo:
In the structure of the title compound C17H16Br2O3, which is a restricted commercial acaricide (common name bromopropylate), has two independent and conformationally similar molecules in the asymmetric unit [dihedral angle between the planes of the two phenyl rings in each, 68.7(4) and 77.4(5)deg]. The C-atoms of the isopropyl group of one of the molecules are disordered over two sites with occupancies of 0.638 and 0.362. Minor non-merohedral twinning was also present in the crystal. Intermolecular hydrogen-bonding interactions involving the hydroxy groups and carboxyl O-atom acceptors give separate centrosymmetric homodimers through cyclic hydrogen-bonding motifs [graph set R2/2(10)].
Resumo:
Purpose: To determine whether there is a difference in neuroretinal function and in macular pigment optical density between persons with high- and low-risk gene variants for age-related macular degeneration (AMD) and no ophthalmoscopic signs of AMD, and to compare the results on neuroretinal function to patients with manifest early AMD. Methods and Participants: Neuroretinal function was assessed with the multifocal electroretinogram (mfERG) for 32 participants (22 healthy persons with no AMD and 10 early AMD patients). The 22 healthy participants with no AMD had high- or low-risk genotypes for either CFH (rs380390) and/or ARMS2 (rs10490924). Trough-to-peak response densities and peak-implicit times were analyzed in 5 concentric rings. Macular pigment optical densitometry was assessed by customized heterochromatic flicker photometry. Results: Trough-to-peak response densities for concentric rings 1 to 3 were, on average, significantly greater in participants with high-risk genotypes than in participants with low-risk genotypes and in persons with early AMD after correction for age and smoking (p<0.05). The group peak- implicit times for ring 1 were, on average, delayed in the patients with early AMD compared with the participants with high- or low-risk genotypes, although these differences were not significant. There was no significant correlation between genotypes and macular pigment optical density. Conclusion: Increased neuroretinal activity in persons who carry high-risk AMD genotypes may be due to genetically determined subclinical inflammatory and/or histological changes in the retina. Neuroretinal function in healthy persons genetically susceptible to AMD may be a useful additional early biomarker (in combination with genetics) before there is clinical manifestation.
Resumo:
In the title salt, C12H11N2O2+·C7H5O6S-, the dihedral angle between the benzene and pyridine rings in the 4-(4-nitrobenzyl)pyridinium cation is 82.7 (2)°. Within the anion there is an intramolecular hydroxy-O-HO(carboxylic acid) bond. In the crystal, the cation forms a single N+-HOsulfonate hydrogen bond with the anion. These cation-anion pairs interact through duplex anion carboxylic acid O-HOsulfonate hydrogen bonds, giving a centrosymmetric cyclic association [graph set R22(16)]. The crystals studied were non-merohedrally twinned.
Resumo:
Purpose: To determine whether neuroretinal function differs in healthy persons with and without common risk gene variants for age- related macular degeneration (AMD) and no ophthalmoscopic signs of AMD, and to compare those findings in persons with manifest early AMD. Methods and Participants: Neuroretinal function was assessed with the multifocal electroretinogram (mfERG) (VERIS, Redwood City, CA,) in 32 participants (22 healthy persons with no clinical signs of AMD and 10 early AMD patients). The 22 healthy participants with no AMD were risk genotypes for either the CFH (rs380390) and/or ARMS2 (rs10490920). We used a slow flash mfERG paradigm (3 inserted frames) and a 103 hexagon stimulus array. Recordings were made with DTL electrodes; fixation and eye movements were monitored online. Trough N1 to peak P1 (N1P1) response densities and P1-implicit times (IT) were analysed in 5 concentric rings. Results: N1P1 response densities (mean ± SD) for concentric rings 1-3 were on average significantly higher in at-risk genotypes (ring 1: 17.97 nV/deg2 ± 1.9, ring 2: 11.7 nV/deg2 ±1.3, ring 3: 8.7 nV/deg2 ± 0.7) compared to those without risk (ring 1: 13.7 nV/deg2 ± 1.9, ring 2: 9.2 nV/deg2 ±0.8, ring 3: 7.3 nV/deg2 ± 1.1) and compared to persons with early AMD (ring 1: 15.3 nV/deg2 ± 4.8, ring 2: 9.1 nV/deg2 ±2.3, ring 3 nV/deg2: 7.3± 1.3) (p<0.5). The group implicit times, P1-ITs for ring 1 were on average delayed in the early AMD patients (36.4 ms ± 1.0) compared to healthy participants with (35.1 ms ± 1.1) or without risk genotypes (34.8 ms ±1.3), although these differences were not significant. Conclusion: Neuroretinal function in persons with normal fundi can be differentiated into subgroups based on their genetics. Increased neuroretinal activity in persons who carry AMD risk genotypes may be due to genetically determined subclinical inflammatory and/or histological changes in the retina. Assessment of neuroretinal function in healthy persons genetically susceptible to AMD may be a useful early biomarker before there is clinical manifestation of AMD.
Resumo:
In the structure of the of the phenolate salt of the sulfa drug sulfamethazine with 3,5-dinitrosalicylic acid, C12H15N4O2S+ C7H3N2O7-, the dihedral angle between the pyrimidine and phenyl rings of the cation is 59.70(17)\%. Cation--anion hydrogen-bonding interactions involving pyrimidine N+-H...O(carboxyl) and amine N-H...O(carboxyl) pairs give a cyclic R2/2(8) motif while secondary N-H...O hydrogen bonds between the aniline group and both sulfone and nitro O-atom acceptors give a two-dimensional structure extending along (001).
Resumo:
The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.
Resumo:
Objective: The present study investigated the foot health of the Kaimanawa feral horse population and tested the hypotheses that horses would have a large range of foot morphology and that the incidence of foot abnormality would be significantly high. Procedures: Abnormality was defined as a variation from what the two veterinarian assessors considered as optimal morphology and which was considered to impact negatively on the structure and/or function of the foot. Fifteen morphometric variables were measured on four calibrated photographic views of all four feet of 20 adult Kaimanawa feral horses. Four morphometric variables were measured from the lateromedial radiographs of the left forefoot of each horse. In addition, the study identified the incidence of gross abnormality observed on the photographs and radiographs of all 80 feet. Results: There was a large variation between horses in the morphometric dimensions, indicating an inconsistent foot type. Mean hoof variables were outside the normal range recommended by veterinarians and hoof care providers; 35% of all feet had a long toe conformation and 15% had a mediolateral imbalance. Abnormalities included lateral (85% of horses) and dorsal (90% of horses) wall flares, presence of laminar rings (80% of horses) and bull-nose tip of the distal phalanx (75% of horses). Both hypotheses were therefore accepted. Conclusions: The Kaimanawa feral horse population demonstrated a broad range of foot abnormalities and we propose that one reason for the questionable foot health and conformation is lack of abrasive wearing by the environment. In comparison with other feral horse populations in Australia and America there may be less pressure on the natural selection of the foot of the Kaimanawa horses by the forgiving environment of the Kaimanawa Ranges. Contrary to popular belief, the feral horse foot type should not be used as an ideal model for the domestic horse foot.
Resumo:
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.