88 resultados para Resistance and human emancipation
Resumo:
Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.
Resumo:
High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.
Resumo:
This paper will focus on the legal issues associated with people displaced as a result of water scarcity. Human displacement can lead to internal displacement (displacement of people within their country) and external displacement (displacement of people into another country). If the displacement takes place as a result of climate change these people may be referred to as climate refugees. The majority of work on climate refugees has focused on those people that will lose their homes as a result of sea –level rise. The number of people that could be displaced as a result of prolonged drought and lack of adequate water supplies is likely to be far more significant in number. There are estimates that around 2.8 billion people will suffer water shortages by 2025 and many of these people are at increased risk of internal or external displacement. Certain groups are more likely to be displaced as a result of prolonged drought or water scarcity. These groups include indigenous and minorities groups living in areas that are more susceptible to climate change and groups living in areas with a history of water shortage and supply issues. People displaced as a result of water scarcity are at increased risks of malnutrition and of dehydration. Furthermore the lack of adequate water supplies in such areas increases the risk and spread of disease among the population. In certain instances internal and external displacement may lead to escalation of conflict and competition for water resources in newly settled territories. This paper will use case studies from Australia (indigenous groups and rural landholders) and East Africa (Ethiopia, Sudan and Kenya) to demonstrate the significance of human displacement arising as a result of water scarcity. Climate adaptation policy frameworks will need to address a number of legal issues, arising as a result of climate displacement from water scarcity. There are a number of unresolved legal issues for both categories of environmental displaced people. The major legal issue for externally environmentally displaced people is lack of international recognition and support for these people. The Climate Change Convention, the Refugee Convention, the Desertification Convention and Human Rights instruments all fail to provide recognition for people externally displaced as a result of environmental conditions. Similarly there is a lack of legal recognition and legal support mechanisms to assist those people internally displaced by environmental conditions. The lack of developed environmental rights in most countries contributes to this problem. Polices and governance frameworks must be put in place which aims to prevent such displacement through programs identifying populations at risk and instigating damage mitigation and relocation programs. In addition there are a number of legal issues which may arise such as; rights of compensation, property and tenure disputes, increases on the water demand and environmental degradation in places of relocation and jurisdictional issues arising in federal countries. This paper will provide an overview of the legal issues at the international and national levels arising as a result of climate displacement from water scarcity.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
The Oceania region is an area particularly prone to natural disasters such as cyclones, tsunamis, floods, droughts, earthquakes and volcanic eruptions. Many of the nations in the region are Small Island Developing States (SIDS), yet even within wealthy states such as Australia and New Zealand there are groups which are vulnerable to disaster. Vulnerability to natural disaster can be understood in human rights terms, as natural disasters threaten the enjoyment of a number of rights which are guaranteed under international law, including rights to health, housing, food, water and even the right to life itself. The impacts of climate change threaten to exacerbate these vulnerabilities, yet, despite the foreseeability of further natural disasters as a result of climate change, there currently exists no comprehensive international framework for disaster response offering practical and/or legally reliable mechanisms to assist at‐risk states and communities. This paper sets out to explore the human rights issues presented by natural disasters and examine the extent to which these issues can be addressed by disaster response frameworks at the international, regional and national levels.
Resumo:
Nha Trang Bay (NTB) is located on the Central Vietnam coast, western South China Sea. Recent coastal development of Nha Trang City has raised public concern over an increasing level of pollution within the bay and degradation of nearby coral reefs. In this study, multiple proxies (e.g., trace metals, rare earth elements (REEs), and Y/Ho) recorded in a massive Porites lutea coral colony were used to reconstruct changes in seawater conditions in the NTB from 1995 to 2009. A 14-year record of REEs and other trace metals revealed that the concentrations of terrestrial trace metals have increased dramatically in response to an increase in coastal development projects such as road, port, and resort constructions, port and river dredging, and dumping activities since 2000. The effects of such developmental processes are also evident in changes in REE patterns and Y/Ho ratios through time, suggesting that both parameters are critical proxies for marine pollution.
Resumo:
Most individuals have more than one job or occupation in their working lives. Most employees are repeatedly faced with the choice of whether to remain in their present job (with the possibility of promotion), or quit to another job in the same occupation with a different firm, or - more radically change occupation. At each stage in an individual's career, the scope for future job or occupational mobility is largely conditioned by the type and quantity of their human capital. This paper presents an empirical study of the factors which link occupational mobility and the acquisition of either firm-based, occupation-specific or general human capital. The data employed are from a cohort of 1980 UK graduates drawn from the Department of Employment Survey 1987. The econometric work presents estimates of the role of firm-based training and occupation-specific training in the career mobility of qualified manpower in the first seven years in the labour market
Resumo:
This study compared virulence and antibiotic resistance traits in clinical and environmental E. faecalis and E. faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E and esp were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linozolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk.
Resumo:
We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.
Resumo:
Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.
Resumo:
We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.
Resumo:
This study examines nascent entrepreneurship by comparing individuals engaged in nascent activities (n=380) with a control group (n=608), after screening a sample from the general population (n=30,427). The study then follows the developmental process of nascent entrepreneurs for 18 months. Bridging and bonding social capital, consisting of both strong and weak ties, was a robust predictor for nascent entrepreneurs, as well as for advancing through the start-up process. With regard to outcomes like first sale or showing a profit, only one aspect of social capital, viz. being a member of a business network, had a statistically significant positive effect. The study supports human capital in predicting entry into nascent entrepreneurship, but only weakly for carrying the start-up process towards successful completion.
Resumo:
Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.
Resumo:
Efficient transformation of barley cv. Schooner was achieved using Agrobacterium delivery, hygromycin or bialaphos selection and embryogenic callus. Using this system, transgenic plants were generated that contained either the green fluorescent protein gene, or transgenes derived from barley yellow dwarf (BYDV) and cereal yellow dwarf (CYDV) viruses. Many of these plants contained 1-3 transgene copies that were inherited in a simple Mendelian manner. Some plants containing BYDV and/or CYDV derived transgenes showed reduced virus symptoms and rates of viral replication when challenged with the appropriate virus. The ability to transform Schooner is a significant advance for the Australian barley industry, as this elite malting variety is, and has for the last 15 years been, the most widely grown barley variety in eastern Australia.
Resumo:
On occasion, virus-derived transgenes in plants can be poorly expressed and yet provide excellent virus resistance, and transgene constructs designed to supplement the expression of endogenous genes can have the effect of co-suppressing themselves and the endogenous genes. These two phenomena appear to result from the same post-transcriptional silencing mechanism, which operates by targeted-RNA degradation. Recent research into RNA-mediated virus resistance and co-suppression has provided insights into the interactions between plant viruses and their hosts, and spawned several models to explain the phenomenon.