189 resultados para Programming (Mathematics)
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
This paper reports on a replication of earlier studies into a possible hierarchy of programming skills. In this study, the students from whom data was collected were at a university that had not provided data for earlier studies. Also, the students were taught the programming language Python, which had not been used in earlier studies. Thus this study serves as a test of whether the findings in the earlier studies were specific to certain institutions, student cohorts, and programming languages. Also, we used a non–parametric approach to the analysis, rather than the linear approach of earlier studies. Our results are consistent with the earlier studies. We found that students who cannot trace code usually cannot explain code, and also that students who tend to perform reasonably well at code writing tasks have also usually acquired the ability to both trace code and explain code.
Resumo:
There is a growing consensus among many educators that the goals of teaching and learning mathematics are to help students solve real-life problems, participate intelligently in daily affairs, and prepare them for jobs (Gardiner, 1994; Roeber, 1995). These goals suggest that the role of routine procedural skills should be diminished while more emphasis ought to be placed on learners gaining conceptual insights and analytical skills that appear essential in real-life mathematical problem solving (Schoenfeld, 1993; Stenmark, 1989).
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This paper is a beginning point for discussing what the literature states about parents’ involvement in their children’s mathematics education. Where possible it will focus on Torres Strait Islander Peoples. Little is known about how Torres Strait Islander parents approach their children’s learning of mathematics and how important early mathematics is to mothers. What is known is that is they are keen for their children to receive an education that provides them with opportunities for their present and future lives. However, gaining access to education is challenging given that the language of instruction in schools is written to English conventions, decontextualised and disconnected from the students’ culture, community and home language. This paper discusses some of the issues raised in the literature about what parents are confronted with when making decisions about their children’s education.
Resumo:
This document reports on the Innovations Working Group that met at the 10th International Conference “Models in Developing Mathematics Education” from the 11-17th September 2009 in Dresden, Saxony. It briefly describes the over arching and consistent themes that emerged from the numerous papers presented. The authors and titles of each of the papers presented will be listed in Table 2.
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
The increased recognition of the theory in mathematics education is evident in numerous handbooks, journal articles, and other publications. For example, Silver and Herbst (2007) examined ―Theory in Mathematics Education Scholarship‖ in the Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed ―Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives‖ in the same handbook. And a central component of both the first and second editions of the Handbook of International Research in Mathematics Education (English, 2002; 2008) was ―advances in theory development.‖ Needless to say, the comprehensive second edition of the Handbook of Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical developments across a variety of disciplines and contexts. Numerous definitions of ―theory‖ appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to provide a ―one-size-fits-all‖ definition of theory per se as applied to our discipline; rather we consider multiple perspectives on theory and its many roles in improving the teaching and learning of mathematics in varied contexts.
Resumo:
How and why visualisations support learning was the subject of this qualitative instrumental collective case study. Five computer programming languages (PHP, Visual Basic, Alice, GameMaker, and RoboLab) supporting differing degrees of visualisation were used as cases to explore the effectiveness of software visualisation to develop fundamental computer programming concepts (sequence, iteration, selection, and modularity). Cognitive theories of visual and auditory processing, cognitive load, and mental models provided a framework in which student cognitive development was tracked and measured by thirty-one 15-17 year old students drawn from a Queensland metropolitan secondary private girls’ school, as active participants in the research. Seventeen findings in three sections increase our understanding of the effects of visualisation on the learning process. The study extended the use of mental model theory to track the learning process, and demonstrated application of student research based metacognitive analysis on individual and peer cognitive development as a means to support research and as an approach to teaching. The findings also forward an explanation for failures in previous software visualisation studies, in particular the study has demonstrated that for the cases examined, where complex concepts are being developed, the mixing of auditory (or text) and visual elements can result in excessive cognitive load and impede learning. This finding provides a framework for selecting the most appropriate instructional programming language based on the cognitive complexity of the concepts under study.
Resumo:
This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.
Resumo:
This paper is a beginning point for discussing what the literature states about parents’ involvement in their children’s mathematics education. Where possible it will focus on Torres Strait Islander Peoples. Little is known about how Torres Strait Islander parents approach their children’s learning of mathematics and how important early mathematics is to mothers. What is known is that is they are keen for their children to receive an education that provides them with opportunities for their present and future lives. However, gaining access to education is challenging given that the language of instruction in schools is written to English conventions, decontextualised and disconnected from the students’ culture, community and home language. This paper discusses some of the issues raised in the literature about what parents are confronted with when making decisions about their children’s education.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Poor student engagement and high failure rates in first year units were addressed at the Queensland University of Technology (QUT) with a course restructure involving a fresh approach to introducing programming. Students’ first taste of programming in the new course focused less on the language and syntax, and more on problem solving and design, and the role of programming in relation to other technologies they are likely to encounter in their studies. In effect, several technologies that have historically been compartmentalised and taught in isolation have been brought together as a breadth-first introduction to IT. Incorporating databases and Web development technologies into what used to be a purely programming unit gave students a very short introduction to each technology, with programming acting as the glue between each of them. As a result, students not only had a clearer understanding of the application of programming in the real world, but were able to determine their preference or otherwise for each of the technologies introduced, which will help them when the time comes for choosing a course major. Students engaged well in an intensely collaborative learning environment for this unit which was designed to both support the needs of students and meet industry expectations. Attrition from the unit was low, with computer laboratory practical attendance rates for the first time remaining high throughout semester, and the failure rate falling to a single figure percentage.