115 resultados para Poisson-Boltzmann
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31°C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9–47.9). These findings may have applications as a decision support tool in planning disease control and risk management programs for cryptosporidiosis disease.
Resumo:
Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
Background While helmet usage is often mandated, few motorcycle and scooter riders make full use of protection for the rest of the body. Little is known about the factors associated with riders’ usage or non-usage of protective clothing. Methods Novice riders were surveyed prior to their provisional licence test in NSW, Australia. Questions related to usage and beliefs about protective clothing, riding experience and exposure, risk taking and demographic details. Multivariable Poisson regression models were used to identify factors associated with two measures of usage, comparing those who sometimes vs rarely/never rode unprotected and who usually wore non-motorcycle pants vs motorcycle pants. Results Ninety-four percent of eligible riders participated and usable data was obtained from 66% (n = 776). Factors significantly associated with riding unprotected were: youth (17–25 years) (RR = 2.00, 95% CI: 1.50–2.65), not seeking protective clothing information (RR = 1.29, 95% CI = 1.07–1.56), non-usage in hot weather (RR = 3.01, 95% CI: 2.38–3.82), awareness of social pressure to wear more protection (RR = 1.48, 95% CI: 1.12–1.95), scepticism about protective benefits (RR = 2.00, 95% CI: 1.22–3.28) and riding a scooter vs any type of motorcycle. A similar cluster of factors including youth (RR = 1.17, 95% CI: 1.04–1.32), social pressure (RR = 1.32, 95% CI: 1.16–1.50), hot weather (RR = 1.30, 95% CI: 1.19–1.41) and scooter vs motorcycles were also associated with wearing non-motorcycle pants. There was no evidence of an association between use of protective clothing and other indicators of risk taking behaviour. Conclusions Factors strongly associated with non-use of protective clothing include not having sought information about protective clothing and not believing in its injury reduction value. Interventions to increase use may therefore need to focus on development of credible information sources about crash risk and the benefits of protective clothing. Further work is required to develop motorcycle protective clothing suitable for hot climates.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
Background: Previous studies have found high temperatures increase the risk of mortality in summer. However, little is known about whether a sharp decrease or increase in temperature between neighbouring days has any effect on mortality. Method: Poisson regression models were used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. The temperature change was calculated as the current day’s mean temperature minus the previous day’s mean. Results: In Brisbane, a drop of more than 3 °C in temperature between days was associated with relative risks (RRs) of 1.157 (95% confidence interval (CI): 1.024, 1.307) for total non external mortality (NEM), 1.186 (95%CI: 1.002, 1.405) for NEM in females, and 1.442 (95%CI: 1.099, 1.892) for people aged 65–74 years. An increase of more than 3 °C was associated with RRs of 1.353 (95%CI: 1.033, 1.772) for cardiovascular mortality and 1.667 (95%CI: 1.146, 2.425) for people aged < 65 years. In Los Angeles, only a drop of more than 3 °C was significantly associated with RRs of 1.133 (95%CI: 1.053, 1.219) for total NEM, 1.252 (95%CI: 1.131, 1.386) for cardiovascular mortality, and 1.254 (95%CI: 1.135, 1.385) for people aged ≥75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. Conclusion : A significant change in temperature of more than 3 °C, whether positive or negative, has an adverse impact on mortality even after controlling for the current temperature.
Resumo:
Background Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Methods and findings Cross-sectional analytic study. Crashed motorcyclists (n = 212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Results Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR = 0.79, 95% CI: 0.69–0.91), pants (RR = 0.49, 95% CI: 0.25–0.94), or gloves (RR = 0.41, 95% CI: 0.26–0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR = 0.77, 95% CI: 0.66–0.89), hands and wrists (RR = 0.55, 95% CI: 0.38–0.81), legs (RR = 0.60, 95% CI: 0.40–0.90), feet and ankles (RR = 0.54, 95% CI: 0.35–0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR = 0.46, 95% CI: 0.28–0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Conclusions Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates.
Resumo:
The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.