73 resultados para Physiology of Green mussel Perna Viridis
Resumo:
Tobacco yellow dwarf virus (TbYDV, family Geminiviridae, genus Mastrevirus) is an economically important pathogen causing summer death and yellow dwarf disease in bean (Phaseolus vulgaris L.) and tobacco (Nicotiana tabacum L.), respectively. Prior to the commencement of this project, little was known about the epidemiology of TbYDV, its vector and host-plant range. As a result, disease control strategies have been restricted to regular poorly timed insecticide applications which are largely ineffective, environmentally hazardous and expensive. In an effort to address this problem, this PhD project was carried out in order to better understand the epidemiology of TbYDV, to identify its host-plant and vectors as well as to characterise the population dynamics and feeding physiology of the main insect vector and other possible vectors. The host-plants and possible leafhopper vectors of TbYDV were assessed over three consecutive growing seasons at seven field sites in the Ovens Valley, Northeastern Victoria, in commercial tobacco and bean growing properties. Leafhoppers and plants were collected and tested for the presence of TbYDV by PCR. Using sweep nets, twenty-three leafhopper species were identified at the seven sites with Orosius orientalis the predominant leafhopper. Of the 23 leafhopper species screened for TbYDV, only Orosius orientalis and Anzygina zealandica tested positive. Forty-two different plant species were also identified at the seven sites and tested. Of these, TbYDV was only detected in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. Using a quadrat survey, the temporal distribution and diversity of vegetation at four of the field sites was monitored in order to assess the presence of, and changes in, potential host-plants for the leafhopper vector(s) and the virus. These surveys showed that plant composition and the climatic conditions at each site were the major influences on vector numbers, virus presence and the subsequent occurrence of tobacco yellow dwarf and bean summer death diseases. Forty-two plant species were identified from all sites and it was found that sites with the lowest incidence of disease had the highest proportion of monocotyledonous plants that are non hosts for both vector and the virus. In contrast, the sites with the highest disease incidence had more host-plant species for both vector and virus, and experienced higher temperatures and less rainfall. It is likely that these climatic conditions forced the leafhopper to move into the irrigated commercial tobacco and bean crop resulting in disease. In an attempt to understand leafhopper species diversity and abundance, in and around the field borders of commercially grown tobacco crops, leafhoppers were collected from four field sites using three different sampling techniques, namely pan trap, sticky trap and sweep net. Over 51000 leafhopper samples were collected, which comprised 57 species from 11 subfamilies and 19 tribes. Twentythree leafhopper species were recorded for the first time in Victoria in addition to several economically important pest species of crops other than tobacco and bean. The highest number and greatest diversity of leafhoppers were collected in yellow pan traps follow by sticky trap and sweep nets. Orosius orientalis was found to be the most abundant leafhopper collected from all sites with greatest numbers of this leafhopper also caught using the yellow pan trap. Using the three sampling methods mentioned above, the seasonal distribution and population dynamics of O. orientalis was studied at four field sites over three successive growing seasons. The population dynamics of the leafhopper was characterised by trimodal peaks of activity, occurring in the spring and summer months. Although O. orientalis was present in large numbers early in the growing season (September-October), TbYDV was only detected in these leafhoppers between late November and the end of January. The peak in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and was also associated with warmer temperatures and lower rainfall. To understand the feeding requirements of Orosius orientalis and to enable screening of potential control agents, a chemically-defined artificial diet (designated PT-07) and feeding system was developed. This novel diet formulation allowed survival for O. orientalis for up to 46 days including complete development from first instar through to adulthood. The effect of three selected plant derived proteins, cowpea trypsin inhibitor (CpTi), Galanthus nivalis agglutinin (GNA) and wheat germ agglutinin (WGA), on leafhopper survival and development was assessed. Both GNA and WGA were shown to reduce leafhopper survival and development significantly when incorporated at a 0.1% (w/v) concentration. In contrast, CpTi at the same concentration did not exhibit significant antimetabolic properties. Based on these results, GNA and WGA are potentially useful antimetabolic agents for expression in genetically modified crops to improve the management of O. orientalis, TbYDV and the other pathogens it vectors. Finally, an electrical penetration graph (EPG) was used to study the feeding behaviour of O. orientalis to provide insights into TbYDV acquisition and transmission. Waveforms representing different feeding activity were acquired by EPG from adult O. orientalis feeding on two plant species, Phaseolus vulgaris and Nicotiana tabacum and a simple sucrose-based artificial diet. Five waveforms (designated O1-O5) were observed when O. orientalis fed on P. vulgaris, while only four (O1-O4) and three (O1-O3) waveforms were observed during feeding on N. tabacum and the artificial diet, respectively. The mean duration of each waveform and the waveform type differed markedly depending on the food source. This is the first detailed study on the tritrophic interactions between TbYDV, its leafhopper vector, O. orientalis, and host-plants. The results of this research have provided important fundamental information which can be used to develop more effective control strategies not only for O. orientalis, but also for TbYDV and other pathogens vectored by the leafhopper.
Resumo:
In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.
Resumo:
Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.
Resumo:
Despite the ongoing debate surrounding climate change, sustainability is increasingly a key consideration for building owners and tenants with the ‘triple bottom line’ as desired outcomes. The triangulated social, economic and environmental goals of sustainability are now the mantra of many businesses. While much has been written of the benefits of green buildings to its occupants, comparatively fewer studies have been devoted to investigating the perceived drawbacks and measures to improve the social sustainability factor, i.e., user satisfaction. Therefore, the purpose of this paper is to consider the impacts of green buildings on its occupants by drawing together past empirical findings and summarizing the results. In addition, the paper will also present a case study of the Institute of Sustainable Development and Architecture, which is Australia’s first 6-green star, rated educational building. Through these methods, the paper will identify gaps between green building performance and user satisfaction. Thereafter, it will introduce a social sustainability framework that seeks to improve the social performance of green buildings. The 6-P model is a holistic framework targeting the following factors that can influence user satisfaction of green buildings. These factors are: public perception, price, policies, psychological, physical and personal.
Resumo:
As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.
Resumo:
Biomass and non-food crop residues are seen as relatively low cost and abundant renewable sources capable of making a large contribution to the world’s future energy and chemicals supply. Signifi cant quantities of ethanol are currently produced from biomass via biochemical processes, but thermochemical conversion processes offer greater potential to utilize the entire biomass source to produce a range of products. This chapter will review thermochemical gasifi cation and pyrolysis methods with a focus on hydrothermal liquefaction processes. Hydrothermal liquefaction is the most energetically advantageous thermochemical biomass conversion process. If the target is to produce sustainable liquid fuels and chemicals and reduce the impact of global warming as a result of carbon dioxide, nitrous oxide, and methane emissions (i.e., protect the natural environment), the use of “green” solvents, biocatalysts and heterogeneous catalysts must be the main R&D initiatives. As the biocrude produced from hydrothermal liquefaction is a complex mixture which is relatively viscous, corrosive, and unstable to oxidation (due to the presence of water and oxygenated compounds), additional upgrading processes are required to produce suitable biofuels and chemicals.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a government Shared Service provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrate this approach, we apply it in the real-life case of a European airport and show how this information can be leveraged in the re-design of "green" business processes.
Resumo:
This paper reports on a current case study of green building initiatives implemented by the Western Australian government in the past decade. The intent is to provide a qualitative understanding of past R&D investments in the Australian built environment. The case method was selected to illustrate three sector-based investments, one of which is reported on here. The conceptual framework underpinning interview design and data analysis uses dynamic capability, absorptive capacity and open innovation theories to better understand the organisational environment in which these initiatives were implemented. Data has been thematically coded to criteria identified from the literature to illustrate organisational characteristics which may have contributed to dissemination and impact. The results will be combined with two further case studies (construction safety and digital modelling), to inform this research. This industry supported project will conclude by developing policy guidelines for future R&D investment in the built environment.
Resumo:
- Preface by Richard T. Watson - Discusses the emerging challenges of designing “green” business processes - Presents tools and methods that organizations can use in order to design and implement environmentally sustainable processes - Provides insights from cases where organizations successfully engaged in more sustainable business practices Green Business Process Management – Towards the Sustainable Enterprise" consolidates the global state-of-the-art knowledge about how business processes can be managed and improved in light of sustainability objectives. Business organizations, a dominant part of our society, have always been a major contributor to the degradation of our natural environment, through the resource consumption, greenhouse emissions, and wastage production associated with their business processes. In order to lessen their impact on the natural environment, organizations must design and implement environmentally sustainable business processes. Finding solutions to this organizational design problem is the key challenge of Green Business Process Management. This book discusses the emerging challenges of designing “green” business processes, presents tools and methods that organizations can use in order to design and implement environmentally sustainable processes, and provides insights from cases where organizations successfully engaged in more sustainable business practices. The book is of relevance to both practitioners and academics who are interested in understanding, designing, and implementing “green” business processes. It also constitutes a valuable resource for students and lecturers in the fields of information systems, management, and sustainable development.
Resumo:
In managing their operations, organizations have traditionally focused on economic imperatives in terms of time, cost, efficiency, and quality. In doing so, they have been a major contributor to environmental degradation caused by re-source consumption, greenhouse emissions, and wastage. As a consequence, or-ganizations are increasingly encouraged to improve their operations also from an ecological perspective, and thus to consider environmental sustainability as an additional management imperative. In order to lessen their impact on the natural environment, organizations must design and implement environmentally sustainable processes, which we call the challenge of Green Business Process Management (Green BPM). This chapter elaborates on the challenge and perspec-tive of Green BPM, and explores the contributions that business process management can provide to creating environmentally sustainable organizations. Our key premise is that business as well as information technology managers need to engage in a process-focused discussion to enable a common, comprehensive understanding of organizational processes, and the process-centered opportunities for making these processes, and ultimately the organization as a process-centric entity, “green.” Through our review of the key BPM capability areas and how they can be framed in terms of environmental sustainability considerations, we provide an overview and introduction to the subsequent chapters in this book.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a governmental Shared Services provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrative this approach, we apply it in the real-life case of an European airport and show how this information can be leveraged in the re-design of “green” busi-ness processes.
Resumo:
In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
Sustainability issues in built environment have attracted an increasingly level of attention from both the general public and the industry. As a result, a number of green building assessment tools have been developed such as the Leadership in Energy and Environmental Design (LEED) and the BRE Environmental Assessment Method (BREEAM), etc. This paper critically reviewed the assessment tools developed in Australian context, i.e. the Green Star rating tools developed by the Green Building Council of Australia. A particular focus is given to the recent developments of these assessment tools. The results showed that the office buildings take the biggest share of Green Star rated buildings. Similarly, sustainable building assessments seem to be more performance oriented which focuses on the operation stage of buildings. In addition, stakeholder engagement during the decision making process is encouraged. These findings provide useful references to the development of next generation of sustainable building assessment tools.
Resumo:
In Australia, few fashion brands have intervened in the design of their products or the systems around their product to tackle environmental pollution and waste. Instead, support of charities (whether social or environmental) has become conflated with sustainability in the eyes of the public.However, three established Australian brands recently put forward initiatives which explicitly tackle the pre-consumer or post-consumer waste associated with their products. In 2011, Billabong, one of the largest surfwear companies in the world, developed a collection of board shorts made from recycled bottles that are also recyclable at end of life. The initiative has been promoted in partnership with Bob Marley’s son Rohan Marley, and the graphics of the board shorts reference the Rastafarian colours and make use of Marley’s song lyrics. In this way, the company has tapped into an aspect of surf culture linked to environmental activism, in which the natural world is venerated. Two mid-market initiatives, by Metalicus and Country Road, each have a social outcome that arguably aligns to the values of their middle-class consumer base. Metalicus is spear-heading a campaign for Australian garment manufacturers to donate their pre consumer waste – fabric off-cuts – to charity Open Family Australia to be manufactured into quilts for the homeless. Country Road has partnered with the Australian Red Cross to implement a recycling scheme in which consumers donate their old Country Road garments in exchange for a Country Road gift voucher. Both strategies, while tackling waste, tell an altruistic story in which the disadvantaged can benefit from the consumption habits of the middle-class. To varying degrees, the initiative chosen by each company feeds into the stories they tell about themselves and about the consumers who purchase their clothing. However, how can we assess the impact of these schemes on waste management in real terms, or indeed the worth of each scheme in the wider context of the fashion system? This paper will assess the claims made by the companies and analyse their efficacy, suggesting that a more nuanced assessment of green claims is required, in which ‘green’ comes in many tonal variations.
Resumo:
In 2003, the Green Building Council of Australia (GBCA) launched their Green Star rating tools for various types of buildings in order to promote green building practice in Australia. Of these, the Green Star-Office Interior rating tool is designed for building owners, tenants and interior designers to assess the environmental impact of an interior fitout. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use and Ecology, Emissions, and Innovation. This paper reviews the usage of the Green Star system in Australian office tenancy fitouts and the potential challenges associated with Green Star-Office Interior implementation. This involves the analysis of score sheets of 66 office interior projects across Australia that achieved Green Star certification. The percentage of green star points obtained within each category and sub-categories (credits) for each project are investigated to illustrate the achievement of credits. The results show that Emission-related credits and Innovation related credits are the easiest and most difficult respectively to obtain. It is also found that 6 Green Star office interior projects perform especially better in the categories of Energy and Ecology than 4 and 5 Star projects. The investigation of point frequency in each category provides prospective Green Star applicants with insights into credit achievement for future projects.