198 resultados para Nonlinear integral equations.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Student understanding of decimal number is poor (e.g., Baturo, 1998; Behr, Harel, Post & Lesh, 1992). This paper reports on a study which set out to determine the cognitive complexities inherent in decimal-number numeration and what teaching experiences need to be provided in order to facilitate an understanding of decimal-number numeration. The study gave rise to a theoretical model which incorporated three levels of knowledge. Interview tasks were developed from the model to probe 45 students’ understanding of these levels, and intervention episodes undertaken to help students construct the baseline knowledge of position and order (Level 1 knowledge) and an understanding of multiplicative structure (Level 3 knowledge). This paper describes the two interventions and reports on the results which suggest that helping students construct appropriate mental models is an efficient and effective teaching strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses control strategies adapted for practical implementation and efficient motion of underwater vehicles. These trajectories are piecewise constant thrust arcs with few actuator switchings. We provide the numerical algorithm which computes the time efficient trajectories parameterized by the switching times. We discuss both the theoretical analysis and experimental implementation results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural convection in a triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base is investigated numerically. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper surface is cooled and the bottom surface is heated, the air flow in the enclosure is potentially unstable to Rayleigh Benard instability. It is revealed that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage and a steady stage. It is also found that the flow inside the enclosure strongly depends on the governing parameters; Rayleigh number and aspect ratio. The asymmetric behaviour of the flow about the geometric centre line is discussed in detailed. The heat transfer through the roof and the ceiling as a form of Nusselt number is also reported in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.