116 resultados para NEUROMUSCULAR ELECTRICAL-STIMULATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a power network, when a propagation energy wave caused by a disturbance hits a weak link, a reflection is appeared and some of energy is transferred across the link. In this work, an analytical descriptive methodology is proposed to study the dynamical stability of a large scale power system. For this purpose, the measured electrical indices (angle, or voltage/frequency) following a fault in different points among the network are used, and the behaviors of the propagated waves through the lines, nodes and buses are studied. This work addresses a new tool for power system stability analysis based on a descriptive study of electrical measurements. The proposed methodology is also useful to detect the contingency condition and synthesis of an effective emergency control scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expoxy nanocomposites with multiwell carbon nanotubes (mwcnts) filler up to 0.3%wt were prepared by sheer mixing and good dispersion of the MWCNTS in the epoxy was successfully achieved. The electrical behaviour was characterized by measurements of the alternating current (ac) and direct current (dc) conductives at room temperature. Typical percolation behaviour was observed at a low percolation threshold of 0.055%. Frequency independent ac conductivity was observed at low frequencies but not at high frequencies. An equivalent circuit models was used to predict the impedence response in these nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High growth in the uptake of electrical appliances is accounting for a significant increase in electricity consumption globally. In some developed countries, standby energy alone may account for about 10% of residential electricity use. The standby power for many appliances used in Australia is still well above the national goal of 1 W or less. In this paper, field measurements taken of standby power and operating power for a range of electrical appliances are presented. It was found that the difference between minimum value and maximum value of standby power could be quite large, up to 22.13 W for home theatre systems, for example. With the exception of home audio systems, however, the annual operating energy used by most electrical appliances was generally greater than the annual standby energy. Consumer behaviour and product choice can have a significant impact on standby power and operating power, which influences both energy demand and greenhouse gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this globalized environment, Taiwanese firms have been very successful in achieving growth via international market expansion. In particular, the Taiwanese electronics industry has shown a dynamism lacking in comparable industries around the world. However, in recent years there has been a move by many of the larger Taiwanese manufacturing firms to outsource their manufacturing to low-cost producers such as China in order to remain competitive. Conversely, most Taiwanese small- to medium-sized enterprises (SMEs) have retained their production facilities in Taiwan. These SMEs seek to expand their sales beyond the domestic market by employing an export strategy, making a significant socioeconomic contribution to the domestic and regional economies. This paper highlights the key dimensions such as enhancing factors (benefits/advantages), inhibiting factors (barriers/costs), and managerial factors (characteristics/commitment) that play an important role in the internationalization of SMEs located within the Taiwanese electronics industry. A logistic regression model is used to predict the probability of a firm being an exporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach aimed at enhancing learning by matching individual students' preferred cognitive styles to computer-based instructional (CBI) material is presented. This approach was used in teaching some components of a third-year unit in an electrical engineering course at the Queensland University of Technology. Cognitive style characteristics of perceiving and processing information were considered. The bimodal nature of cognitive styles (analytic/imager, analytic/verbalizer, wholist/imager and wholist/verbalizer) was examined in order to assess the full ramification of cognitive styles on learning. In a quasi-experimental format, students' cognitive styles were analysed by cognitive style analysis (CSA) software. On the basis of the CSA results the system defaulted students to either matched or mismatched CBI material. The consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. Analysing the differences between cognitive styles on individual test tasks also suggests that certain test tasks may better suit certain cognitive styles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to develop a Demand-Side-Response (DSR) model, which assists electricity end-users to be engaged in mitigating peak demands on the electricity network in Eastern and Southern Australia. The proposed innovative model will comprise a technical set-up of a programmable internet relay, a router, solid state switches in addition to the suitable software to control electricity demand at user's premises. The software on appropriate multimedia tool (CD Rom) will be curtailing/shifting electric loads to the most appropriate time of the day following the implemented economic model, which is designed to be maximizing financial benefits to electricity consumers. Additionally the model is targeting a national electrical load be spread-out evenly throughout the year in order to satisfy best economic performance for electricity generation, transmission and distribution. The model is applicable in region managed by the Australian Energy Management Operator (AEMO) covering states of Eastern-, Southern-Australia and Tasmania.