186 resultados para Molecular biology|Microbiology|Oceanography
Resumo:
Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
Dystrobrevin binding protein 1 (DTNBP1), or dysbindin, is thought to be critical in regulating the glutamatergic system. While the dopamine pathway is known to be important in the aetiology of schizophrenia, it seems likely that glutamatergic dysfunction can lead to the development of schizophrenia. DTNBP1 is widely expressed in brain, levels are reduced in brains of schizophrenia patients and a DTNBP1 polymorphism has been associated with reduced brain expression. Despite numerous genetic studies no DTNBP1 polymorphism has been strongly implicated in schizophrenia aetiology. Using a haplotype block-based gene-tagging approach we genotyped 13 SNPs in DTNBP1 to investigate possible associations with DTNBP1 and schizophrenia. Four polymorphisms were found to be significantly associated with schizophrenia. The strongest association was found with an A/C SNP in intron 7 (rs9370822). Homozygotes for the C allele of rs9370822 were more than two and a half times as likely to have schizophrenia compared to controls. The other polymorphisms showed much weaker association and are less likely to be biologically significant. These results suggest that DTNBP1 is a good candidate for schizophrenia risk and rs9370822 is either functionally important or in disequilibrium with a functional SNP, although our observations should be viewed with caution until they are independently replicated.
Resumo:
Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
Objective: Regeneration of osseous defects by tissue-engineering or cell delivery approach provides a novel means of treatment utilizing cell biology, materials sciences, and molecular biology. The concept of in vitro explanted mesenchymal stem cells (MSCs) with an ability to induce new bone formation has been demonstrated in some small animal models. However, contradictory results have been reported regarding the regenerative capacity of MSCs after ex vivo expansion due to the lack of the understanding of microenvironment for MSC differentiation in vivo. ----- ----- Methods: In our laboratory tissue-derived and bone marrow-derived MSCs have been investigated in their osteogenesis. Cell morphology and proliferation were studied by microscopy, confocal microscopy, FACS and cell counting. Cell differentiation and matrix formation were analysed by matrix staining, quantitative PCR, and immunohistochemistry. A SCID skull defect model was used for cell transplantation studies.----- ----- Results: It was noted that tissue-derived and bone marrow-derived MSCs showed similar characteristics in cell surface marker expression, mesenchymal lineage differentiation potential, and cell population doubling. MSCs from both sources could initiate new bone formation in bone defects after delivery into a critical size defects. The bone forming cells were from both transplanted cells and endogenous cells from the host. Interestingly, the majority of in vitro osteogenic differentiated cells did not form new bone directly even though mineralized matrix was synthesized in vitro by MSCs. Furthermore, no new bone formation was detected when MSCs were transplanted subcutaneously.----- ----- Conclusion: This study unveiled the limitations of MSC delivery in bone regeneration and proposed that in vivo microenvironment needs to be optimized for MSC delivery in osteogenesis.
Resumo:
Regeneration of osseous defects by tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. The concept of in vitro cultured osteoblasts having an ability to induce new bone formation has been demonstrated in the critical size defects using small animal models. The bone derived cells can be incorporated into bioengineered scaffolds and synthesize bone matrix, which on implantation can induce new bone formation. In search of optimal cell delivery materials, the extracellular matrix as cell carriers for the repair and regeneration of tissues is receiving increased attention. We have investigated extracellular matrix formed by osteoblasts in vitro as a scaffold for osteoblasts transplantation and found a mineralized matrix, formed by human osteoblasts in vitro, can initiate bone formation by activating endogenous mesenchymal cells. To repair the large bone defects, osteogenic or stem cells need to be prefabricated in a large three dimensional scaffold usually made of synthetic biomaterials, which have inadequate interaction with cells and lead to in vivo foreign body reactions. The interstitial extracellular matrix has been applied to modify biomaterials surface and identified vitronectin, which binds the heparin domain and RGD (Arg-Gly-Asp) sequence can modulate cell spreading, migration and matrix formation on biomaterials. We also synthesized a tri-block copolymer, methoxy-terminated poly(ethylene glycol)(MPEG)-polyL-lactide(PLLA)-polylysine(PLL) for human osteoblasts delivery. We identified osteogenic activity can be regulated by the molecular weight and composition of the triblock copolymers. Due to the sequential loss of lineage differentiation potential during the culture of bone marrow stromal cells that hinderers their potential clinical application, we have developed a clonal culture system and established several stem cell clones with fast growing and multi-differentiation properties. Using proteomics and subtractive immunization, several differential proteins have been identified and verified their potential application in stem cell characterization and tissue regeneration
Resumo:
The ultimate goal of periodontal therapy is to regenerate periodontal supporting tissues, but this is hard to achieve as the results of periodontal techniques for regeneration are clinically unpredictable. Stem cells owing to their plasticity and proliferation potential provides a new paradigm for periodontal regeneration. Stem cells from mesenchyme can self renew and generate new dental tissues (including dentin and cementum), alveolar bone and periodontal ligament, and thus they have great potential in periodontal regeneration. This chapter presents an insight into mesenchymal stem cells and their potential use in periodontal regeneration. In this chapter the cellular and molecular biology in periodontal regeneration will be introduced, followed by a range of conventional surgical procedures for periodontal regeneration will be discussed. Mesenchymal stem cells applied in regenerated periodontal tissue and their biological characterizations in vitro will be also introduced. Lastly, the use of mesenchymal stem cell to repair periodontal tissues in large animal models will be also reviewed.
Resumo:
The proportion of functional sequence in the human genome is currently a subject of debate. The most widely accepted figure is that approximately 5% is under purifying selection. In Drosophila, estimates are an order of magnitude higher, though this corresponds to a similar quantity of sequence. These estimates depend on the difference between the distribution of genomewide evolutionary rates and that observed in a subset of sequences presumed to be neutrally evolving. Motivated by the widening gap between these estimates and experimental evidence of genome function, especially in mammals, we developed a sensitive technique for evaluating such distributions and found that they are much more complex than previously apparent. We found strong evidence for at least nine well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least seven classes in an alignment of four mammals, including human. We also identified at least three rate classes in human ancestral repeats. By positing that the largest of these ancestral repeat classes is neutrally evolving, we estimate that the proportion of nonneutrally evolving sequence is 30% of human ancestral repeats and 45% of the aligned portion of the genome. However, we also question whether any of the classes represent neutrally evolving sequences and argue that a plausible alternative is that they reflect variable structure-function constraints operating throughout the genomes of complex organisms.