273 resultados para Meyer rod
Resumo:
We report on an inter-comparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratories and in field campaigns to measure the water uptake of aerosol particles and were never intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instrument and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.
Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves
Resumo:
Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.
Resumo:
Reflection Questions • How does the collaborative reading workshop approach engage students in higher order thinking and deep engagement with text? • How does the collaborative reading workshop approach support students to be active citizens and critically literate? • How does the interaction and collaborative thinking in this approach contribute to the students’ intellectual engagement and the teacher’s pedagogical rigor? • How could this approach be implemented or adapted at your school?
Resumo:
One of the definitions of the term myth is ‘an unproved or false collective belief that is used to justify a social institution’ (see http://dictionary.reference.com/browse/myth). Before we are criticized for suggesting such an irreverent thought might apply to tourism academia, readers must recognize that organizations and industries often operate using shared collective myths (see Meyer and Rowan 1977). Institutionalized rules and processes function as myths that provide legitimacy. The question of interest in this paper is not in the context of the quality of tourism academic research output, which is addressed by other papers in this research probe section. Rather, of importance is enhancing understanding of the extent to which our collective knowledge, legitimized through publishing in peer reviewed academic publications, is proving of value to industry stakeholders, an axiom that appears to be largely unquestioned and unproven.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
Over the past decade, Thai schools have been encouraged by the Thai Ministry of Education to introduce more student-centred pedagogies such as cooperative learning into their classrooms (Carter, 2006). However, prior research has indicated that the implementation of cooperative learning into Thai schools has been confounded by cultural traditions endemic within Thai schools (Deveney, 2005). The purpose of the study was to investigate how 32 Grade 3 and 32 Grade 4 students enrolled in a Thai school engaged with cooperative learning in mathematics classrooms after they had been taught cooperative learning strategies and skills. These strategies and skills were derived from a conceptual framework that was the outcome of an analysis and synthesis of social learning, behaviourist and socio-cognitive theories found in the research literature. The intervention began with a two week program during which the students were introduced to and engaged in practicing a set of cooperative learning strategies and skills (3 times a week). Then during the next four weeks (3 times a week), these cooperative learning strategies and skills were applied in the contexts of two units of mathematics lessons. A survey of student attitudes with respect to their engagement in cooperative learning was conducted at the conclusion of the six-week intervention. The results from the analysis of the survey data were triangulated with the results derived from the analysis of data from classroom observations and teacher interviews. The analysis of data identified four complementary processes that need to be considered by Thai teachers attempting to implement cooperative learning into their mathematics classrooms. The paper concludes with a set of criteria derived from the results of the study to guide Thai teachers intending to implement cooperative learning strategies and skills in their classrooms.
Resumo:
Background: There is a sound rationale for the population-based approach to falls injury prevention but there is currently insufficient evidence to advise governments and communities on how they can use population-based strategies to achieve desired reductions in the burden of falls-related injury.---------- Aim: To quantify the effectiveness of a streamlined (and thus potentially sustainable and cost-effective), population-based, multi-factorial falls injury prevention program for people over 60 years of age.---------- Methods: Population-based falls-prevention interventions were conducted at two geographically-defined and separate Australian sites: Wide Bay, Queensland, and Northern Rivers, NSW. Changes in the prevalence of key risk factors and changes in rates of injury outcomes within each community were compared before and after program implementation and changes in rates of injury outcomes in each community were also compared with the rates in their respective States.---------- Results: The interventions in neither community substantially decreased the rate of falls-related injury among people aged 60 years or older, although there was some evidence of reductions in occurrence of multiple falls reported by women. In addition, there was some indication of improvements in fall-related risk factors, but the magnitudes were generally modest.---------- Conclusion: The evidence suggests that low intensity population-based falls prevention programs may not be as effective as those are intensively implemented.
Resumo:
This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.
Resumo:
Promoted ignition testing [1–3] is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. In these tests, a promoter is used to ignite each metal rod to start the sample burning. Experiments were performed to better understand the promoted ignition test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Various ignition promoters were used to ignite the test samples. The thermocouple measurements and test video were synchronized to determine temperature increase with respect to time and length along each test sample. A recommended length of test sample that must be consumed to be considered a flammable material was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.
Resumo:
In their studies, Eley and Meyer (2004) and Meyer and Cleary (1998) found that there are sources of variation in the affective and process dimensions of learning in mathematics and clinical diagnosis specific to each of these disciplines. Meyer and Shanahan (2002) argue that: General purpose models of student learning that are transportable across different discipline contexts cannot, by definition, be sensitive to sources of variation that may be subject-specific (2002. p. 204). In other words, to explain the differences in learning approaches and outcomes in a particular discipline, there are discipline-specific factors, which cannot be uncovered in general educational research. Meyer and Shanahan (2002) argue for a need to "seek additional sources of variation that are perhaps conceptually unique ... within the discourse of particular disciplines" (p. 204). In this paper, the development of an economics-specific construct (called economic thinking ability) is reported. The construct aims to measure discipline-sited ability of students that has important influence on learning in economics. Using this construct, economic thinking abilities of introductory and intermediate level economics students were measured prior to the commencement, and at the end, of their study over one semester. This enabled factors associated with students' pre-course economic thinking ability and their development in economic thinking ability to be investigated. The empirical findings will address the 'nature' versus 'nurture' debate in economics education (Frank, et aI., 1993; Frey et al., 1993; Haucap and Tobias 2003). The implications for future research in economics education will also be discussed.
Resumo:
Economics education research studies conducted in the UK, USA and Australia to investigate the effects of learning inputs on academic performance have been dominated by the input-output model (Shanahan and Meyer, 2001). In the Student Experience of Learning framework, however, the link between learning inputs and outputs is mediated by students' learning approaches which in turn are influenced by their perceptions of the learning contexts (Evans, Kirby, & Fabrigar, 2003). Many learning inventories such as Biggs' Study Process Questionnaires and Entwistle and Ramsden' Approaches to Study Inventory have been designed to measure approaches to academic learning. However, there is a limitation to using generalised learning inventories in that they tend to aggregate different learning approaches utilised in different assessments. As a result, important relationships between learning approaches and learning outcomes that exist in specific assessment context(s) will be missed (Lizzio, Wilson, & Simons, 2002). This paper documents the construction of an assessment specific instrument to measure learning approaches in economics. The post-dictive validity of the instrument was evaluated by examining the association of learning approaches to students' perceived assessment demand in different assessment contexts.
Resumo:
Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.
Resumo:
Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.
Resumo:
A membrane filtration plant using suitable micro or ultra-filtration membranes has the potential to significantly increase pan stage capacity and improve sugar quality. Previous investigations by SRI and others have shown that membranes will remove polysaccharides, turbidity and colloidal impurities and result in lower viscosity syrups and molasses. However, the conclusion from those investigations was that membrane filtration was not economically viable. A comprehensive assessment of current generation membrane technology was undertaken by SRI. With the aid of two pilot plants provided by Applexion and Koch Membrane Systems, extensive trials were conducted at an Australian factory using clarified juice at 80–98°C as feed to each pilot plant. Conditions were varied during the trials to examine the effect of a range of operating parameters on the filtering characteristics of each of the membranes. These parameters included feed temperature and pressure, flow velocity, soluble solids and impurity concentrations. The data were then combined to develop models to predict the filtration rate (or flux) that could be expected for nominated operating conditions. The models demonstrated very good agreement with the data collected during the trials. The trials also identified those membranes that provided the highest flux levels per unit area of membrane surface for a nominated set of conditions. Cleaning procedures were developed that ensured the water flux level was recovered following a clean-in-place process. Bulk samples of clarified juice and membrane filtered juice from each pilot were evaporated to syrup to quantify the gain in pan stage productivity that results from the removal of high molecular weight impurities by membrane filtration. The results are in general agreement with those published by other research groups.
Resumo:
The high moisture content of mill mud (typically 75–80% for Australian factories) results in high transportation costs for the redistribution of mud onto cane farms. The high transportation cost relative to the nutrient value of the mill mud results in many milling companies subsidising the cost of this recycle to ensure a wide distribution across the cane supply area. An average mill would generate about 100 000 t of mud (at 75% moisture) in a crushing season. The development of mud processing facilities that will produce a low moisture mud that can be effectively incorporated into cane land with existing or modified spreading equipment will improve the cost efficiency of mud redistribution to farms; provide an economical fertiliser alternative to more farms in the supply area; and reduce the potential for adverse environmental impacts from farms. A research investigation assessing solid bowl decanter centrifuges to produce low moisture mud with low residual pol was undertaken and the results compared to the performance of existing rotary vacuum filters in factory trials. The decanters were operated on filter mud feed in parallel with the rotary vacuum filters to allow comparisons of performance. Samples of feed, mud product and filtrate were analysed to provide performance indicators. The decanter centrifuge could produce mud cakes with very low moistures and residual pol levels. Spreading trials in cane fields indicated that the dry cake could be spread easily by standard mud trucks and by trucks designed specifically to spread fertiliser.