54 resultados para Methanol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using Ru(CN) 4− 6 (aq), ferrocene methanol (FcMeOH), Fe(CN) 3− 6 (aq) and Ru(NH 3) 3+ 6 (aq), approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and Fe(CN) 3− 6 (aq) as mediators, and the use of Ru(NH 3) 3+ 6(aq) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators Fe(CN) 3− 6(aq) and Fe(CN) 4− 6(aq). In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The galvanic replacement reaction has received considerable interest due to the creation of novel bimetallic nanomaterials that minimise the use of expensive metals while maintaining enhanced electrocatalytic properties for certain reactions. In this work we investigate the galvanic replacement of electrochemically synthesised iron nanocubes on glassy carbon, with gold and palladium. The resultant nanomaterials demonstrate quite a difference in morphology; the original cuboid like template is maintained in the case of gold but destroyed when palladium is used. The electrochemical and electrocatalytic behaviours of these materials are reported for reactions such as methanol oxidation, hydrogen evolution and oxygen reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is part of a series of chemical investigations of the genus Grevillea. Two new arbutin derivatives, seven new bisresorcinols, including a mixture of two isomers, three known flavonol glycosides, and four known resorcinols, including a mixture of two homologous compounds, were isolated from the ethyl acetate extract of the leaves and methanol extract of the stems of Grevillea banksii. The new compounds were identified, on the basis of spectroscopic data, as 6'-O-(3-(2(hydroxymethyl)acryloyloxy)-2-methylpropanoyl)arbutin (1), 6'-O-(2-methylacryloyl)arbutin (2), 5,5'-(4(Z)-dodecen-1,12diyl)bisresorcinol (6), 2'-methyl-5,5'-(4(Z)-tetradecen-1,14-diyl)bisresorcinol (8), 2,2'-di(4-hydroxyprenyl)-5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (9), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl) 5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (10), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl)5,5'-(8(Z)-tetradecen-l,14-diyl)bisresorcinol (11), 5,5'-(10(Z)-tetradecen-1-on-diyl)bisresorcinol (12) and 5,5'-(4(Z)-tetradecen-1-on-diyl)bisresorcinol (13).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To quantify the molecular lipid composition of patient-matched tear and meibum samples and compare tear and meibum lipid molecular profiles. Methods. Lipids were extracted from tears and meibum by bi-phasic methods using 10:3 tertbutyl methyl ether:methanol, washed with aqueous ammonium acetate, and analyzed by chipbased nanoelectrospray ionization tandem mass spectrometry. Targeted precursor ion and neutral loss scans identified individual molecular lipids and quantification was obtained by comparison to internal standards in each lipid class. Results. Two hundred and thirty-six lipid species were identified and quantified from nine lipid classes comprised of cholesterol esters, wax esters, (O-acyl)-x-hydroxy fatty acids, triacylglycerols, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylserine. With the exception of phospholipids, lipid molecular profiles were strikingly similar between tears and meibum. Conclusions. Comparisons between tears and meibum indicate that meibum is likely to supply the majority of lipids in the tear film lipid layer. However, the observed higher mole ratio of phospholipid in tears shows that analysis of meibum alone does not provide a complete understanding of the tear film lipid composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. To examine the deposition of tear phospholipids and cholesterol onto worn contact lenses and the effect of lens material and lens care solution. METHODS. Lipids were extracted from tears and worn contact lenses using 2:1 chloroform: Methanol and the extract washed with aqueous ammonium acetate, before analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS. Twenty-three molecular lipids from the sphingomyelin (SM) and phosphatidylcholine (PC) classes were detected in tears, with total concentrations of each class determined to be 5 ± 1 pmol/μL (~3.8 μg/mL) and 6 ± 1 pmol/μL (~ 4.6μg/mL), respectively. The profile of individual phospholipids in both of these classes was shown to be similar in contact lens deposits. Deposition of representative polar and nonpolar lipids were shown to be significantly higher on senofilcon A contact lenses, with ~59 ng/lens SM, 195 ng/lens PC, and 9.9 μg/lens cholesterol detected, whereas balafilcon A lens extracts contained ~19 ng/lens SM, 19 ng/lens PC, and 3.9 μg/lens cholesterol. Extracts from lenses disinfected and cleaned with two lens care solutions showed no significant differences in total PC and SM concentrations; however, a greater proportion of PC than SM was observed, compared with that in tears. CONCLUSIONS. Phospholipid deposits extracted from worn contact lenses show a molecular profile similar to that in tears. The concentration of representative polar and nonpolar lipids deposited onto contact lenses is significantly affected by lens composition. There is a differential efficacy in the removal of PC and SM with lens care solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for light-addressable nanosized compounds we have synthesized 10 dinuclear homometallic trisbipyridyl complexes of linear structure with the general formula [M(bpy)3-BL-M(bpy)3]4+ [M = Ru(II) or Os(II); BL = polyphenylenes (2, 3, 4, or 5 units) or indenofluorene; bpy = 2,2′-bipyridine]. By using a "chemistry on the complex" approach, different sizes of rodlike systems have been obtained with a length of 19.8 and 32.5 Å for the shortest and longest complex, respectively. For one of the ruthenium precursors, [RUbpy-ph2-Si(CH3) 3][PF6]2, single crystals were obtained by recrystallization from methanol. Their photophysical and electrochemical properties are reported. All the compounds are luminescent both at room and low temperature with long excited-state lifetimes due to an extended delocalization. Nanosecond transient absorption showed that the lowest excited state involves the chelating unit attached to the bridging ligand. Electrochemical data indicated that the first reduction is at a slightly more positive potential than for the reference complexes [M(bpy)3]2+ (M = Ru, Os). This result confirms that the best acceptor is the bipyridine moiety connected to the conjugated spacers. The role of the tilt angle between the phenylene units, in the two series of complexes, for the ground and excited states is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of high quality boron carbide (B4C) powder is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3) / polyvinyl acetate (PVAc) product. Precursor solutions are prepared via polymerisation of vinyl acetate (VA) in methanol in the presence of dissolved H3BO3. With excess VA monomer being removed during evaporation of the solvent, the polymerisation time is then used to manage availability of carbon for reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.