69 resultados para Mengs, Anton Raphaël, 1728-1779.
Resumo:
Based on longitudinal ethnographic fieldwork in two industrial design departments and two design companies, we explore the role of spatial arrangements for supporting creative design practices within different design studios. From our results, we show that designers explicitly make use of the physical space for: 1) communicating and inspiring design ideas; 2) exploring design solutions, and; 3) managing design projects. We believe that these design practices could bring insightful implications for developing ubiquitous technologies to support the design profession.
Resumo:
The role of material artefacts in supporting distributed and co-located work practices has been well acknowledged within HCI and CSCW research. In this paper, we show that in addition to their ecological, coordinative and organizational support, artefacts also play an 'experiential' role. In this case, artefacts not only improve efficiency or have a purely functional role (e.g. allowing people to complete tasks quickly), but the materiality, use and manifestations of these artefacts bring quality and richness to people's performance and help them make better sense of their everyday lives. In a domain such as industrial design, such artefacts play an important role for supporting creativity and innovation. Based on our ethnographic fieldwork on understanding cooperative design practices of industrial design students and researchers, we describe several experiential practices that are supported by design-related artefacts such as sketches, drawings, physical models and explorative prototypes -- used and developed in designers' everyday work. Our main intention in carrying out this kind of research is to develop technologies to support designers' everyday practices. We believe that with the emergence of ubiquitous computing, there is a growing need to focus on the personal, social and creative side of people's everyday experiences. By focusing on the experiential practices of designers, we can provide a much broader view in the design of new interactive technologies.
Resumo:
This paper examines the role of visual information in a remote help-giving situation involving the collaborative physical task of designing a prototype remote control. We analyze a set of video recordings captured within an experimental setting. Our analysis shows that using gestures and relevant artefacts and by projecting activities on the camera, participants were able to discuss several design-related issues. The results indicate that with a limited camera view (mainly faces and shoulders), participants' conversations were centered at the physical prototype that they were designing. The socially organized use of our experimental setting provides some key implications for designing future remote collaborative systems.
Resumo:
Playfulness, with non-intrusive elements, can be considered a useful resource for enhancing social awareness and community building within work organizations. Taking inspirations from the cultural probes approach, we developed organizational probes as a set of investigation tools that could provide useful information about employees’ everyday playful experiences within their work organizations. In an academic work environment, we applied our organizational probes over a period of three weeks. Based on the collected data we developed two design concepts for playful technologies in work environments.
Resumo:
The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions and to better understand cellular processes. Combining results from two field studies, we explore the role of molecular structures in life scientists’ current work from a humanfactors perspective. Our main conclusion is that different representations of molecular structures, due to their visual nature, are important for supporting collaboration, constructing new knowledge and supporting scientists’ professional activities in general.
Resumo:
CSCW researchers have increasingly come to realize that the material work setting and its population of artefacts play a crucial part in coordination of distributed or co-located work. This paper uses the notion of physicality as a basis to understand cooperative work. Using examples from an ongoing fieldwork on cooperative design practices, it provides a conceptual understanding of physicality and shows that material settings and co-workers’ working practices play an important role in understanding the physicality of cooperative design.
Resumo:
With the emergence of personal and ubiquitous computing systems in the last decade, interaction designers have started designing products by employing quality oriented aspects such as user experience, playfulness, enchantment and others. In order to explore novel forms of mediated interactions, designers need to focus beyond the basic user requirements and usability issues. We present a procedure and results of a design exercise that we carried out with students of a master's course on Visual Design. Our intention was to explore new forms of mediated interaction by using a specific design exercise. We provide the details of the resulted design concepts and discuss the usefulness of our design exercise.
Resumo:
Motivation Awareness is an integral part of remote collaborative work and has been an important theme within the CSCW research. Our project aims at understanding and mediating non-verbal cues between remote participants involved in a design project. Research approach Within the AMIDA project we focus on distributed 'cooperative design' teams. We especially focus on the 'material' signals - signals in which people communicate through material artefacts, locations and their embodied actions. We apply an ethnographic approach to understand the role of physical artefacts in co-located naturalistic design setting. Based on the results we will generate important implications to support remote design work. We plan to develop a mixed-reality interface supported by a shared awareness display. This awareness display will provide information about the activities happening in the design room to remotely located participants. Findings/Design Our preliminary investigation with real-world design teams suggests that both the materiality of designers' work settings and their social practices play an important role in understanding these material signals that are at play. Originality/Value Most research supporting computer mediated communication have focused on either face-to-face or linguistically oriented communication paradigms. Our research focuses on mediating the non-verbal, material cues for supporting collaborative activities without impoverishing what designers do in their day to day working lives. Take away message An ethnographic approach allows us to understand the naturalistic practices of design teams, which can lead to designing effective technologies to support group work. In that respect, the findings of our research will have a generic value beyond the application domain chosen (design teams).
Resumo:
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.
Resumo:
In this paper, we introduce a vision called Smart Material Interfaces (SMIs), which takes advantage of the latest generation of engineered materials that has a special property defined “smart”. They are capable of changing their physical properties, such as shape, size and color, and can be controlled by using certain stimuli (light, potential difference, temperature and so on). We describe SMIs in relation to Tangible User Interfaces (TUIs) to convey the usefulness and a better understanding of SMIs.
Resumo:
In this paper, we provide the results of a field study of a Ubicomp system called CAM (Cooperative Artefact Memory) in a Product Design studio. CAM is a mobile-tagging based messaging system that allows designers to store relevant information onto their design artefacts in the form of messages, annotations and external web links. From our field study results, we observe that the use of CAM adds another shared ‘space’ onto these design artefacts – that are in their natural settings boundary objects themselves. In the paper, we provide several examples from the field illustrating how CAM helps in the design process.
Resumo:
Space and spatial arrangements play an important role in our everyday social interactions. The way we use and manage our surrounding space is not coincidental, on the contrary, it reflects the way we think, plan and act. Within collaborative contexts, its ability to support social activities makes space an important component of human cognition in the post-cognitive era. As technology designers, we can learn a lot by rigorously understanding the role of space for the purpose of designing collaborative systems. In this paper, we describe an ethnographic study on the use of workplace surfaces in design studios. We introduce the idea of artful surfaces. Artful surfaces are full of informative, inspirational and creative artefacts that help designers accomplish their everyday design practices. The way these surfaces are created and used could provide information about how designers work. Using examples from our fieldwork, we show that artful surfaces have both functional and inspirational characteristics. We indentify four types of artful surfaces: personal, shared, project-specific and live surfaces. We believe that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers’ everyday work.
Resumo:
Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.
Resumo:
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.