66 resultados para Magnetic-field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-component fluid model for a dusty plasma-sheath in an oblique magnetic field is presented. The study is carried out for the conditions when the thermophoretic force associated with the electron temperature gradient is one of the most important forces affecting dust grains in the sheath. It is shown that the sheath properties (the sheath size, the electron, ion and dust particle densities and velocities, the electric field potential, and the forces affecting the dust particles) are functions of the neutral gas pressure and ion temperature, the dust size, the dust material density, and the electron temperature gradient. Effects of plasma-dust collisions on the sheath structure are studied. It is shown that an increase in the forces pushing dust particles to the wall is accompanied by a decrease in the sheath width. The results of this work are particularly relevant to low-temperature plasma-enabled technologies, where effective control of nano- and microsized particles near solid or liquid surfaces is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model of a large-area planar plasma producer based on surface wave (SW) propagation in a plasma-metal structure with a dielectric sheath is presented. The SW which produces and sustains the microwave gas discharge in the planar structure propagates along an external magnetic field and possesses an eigenfrequency within the range between electron cyclotron and electron plasma frequencies. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ability to control the properties of single-wall nanotubes produced in the arc discharge is important for many practical applications. Our experiments suggest that the length and purity of single-wall nanotubes significantly increase when the magnetic field is applied to the arc discharge. A model of a single wall carbon nanotube interaction and growth in the thermal plasma was developed which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge and energy transfer processes between nanotube and plasma. The numerical simulations based on Monte-Carlo technique were performed, which explain an increase of the nanotubes produced in the magnetic field - enhanced arc discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The excitation of surface plasmon-polariton waves propagating across an external magnetic field (Voigt geometry) in a semiconductor-metal structure by means of the attenuated total reflection method is investigated. The phase matching conditions for the surface waves excitation in the Kretchmann configuration are derived and analyzed. The effect of different nonlinearities on the excitation of the surface waves is studied as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of an inductively rotating current were observed on low-frequency inductively coupled plasmas. The spatial distribution of electromagnetic fields was investigated in a cylindrical metallic chamber filled with dense plasma. The distribution of the magnetic field in plasma chamber was observed for rarefied and dense plasmas. The plasma was assumed as uniform in the electromagnetic fields. The results showed the plasma density increased with power and the electron density increased with pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.