308 resultados para MOLECULAR VIABILITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerative medicine techniques are currently being investigated to replace damaged cartilage. Critical to the success of these techniques is the ability to expand the initial population of cells while minimising de-differentiation to allow for hyaline cartilage to form. Three-dimensional culture systems have been shown to enhance the differentiation of chondrocytes in comparison to two-dimensional culture systems. Additionally, bioreactor expansion on microcarriers can provide mechanical stimulation and reduce the amount of cellular manipulation during expansion. The aim of this study was to characterise the expansion of human chondrocytes on microcarriers and to determine their potential to form cartilaginous tissue in vitro. High-grade human articular cartilage was obtained from leg amputations with ethics approval. Chondrocytes were isolated by collagenase digestion and expanded in either monolayers (104 cells/cm2) or on CultiSpher-G microcarriers (104 cells/mg) for three weeks. Following expansion, monolayer cells were passaged and cells on microcarriers were either left intact or the cells were released with trypsin/EDTA. Pellets from these three groups were formed and cultured for three weeks to establish the chondrogenic differentiation potential of monolayer-expanded and microcarrier-expanded chondrocytes. Cell viability, proliferation, glycosaminoglycan (GAG) accumulation, and collagen synthesis were assessed. Histology and immunohistochemistry were also performed. Human chondrocytes remained viable and expanded on microcarriers 10.2±2.6 fold in three weeks. GAG content significantly increased with time, with the majority of GAG found in the medium. Collagen production per nanogram DNA increased marginally during expansion. Histology revealed that chondrocytes were randomly distributed on microcarrier surfaces yet most pores remained cell free. Critically, human chondrocytes expanded on microcarriers maintained their ability to redifferentiate in pellet culture, as demonstrated by Safranin-O and collagen II staining. These data confirm the feasibility of microcarriers for passage-free cultivation of human articular chondrocytes. However, cell expansion needs to be improved, perhaps through growth factor supplementation, for clinical utility. Recent data indicate that cell-laden microcarriers can be used to seed fresh microcarriers, thereby increasing the expansion factor while minimising enzymatic passage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human mesenchymal stem cells (hMSCs) possess great therapeutic potential for the treatment of bone disease and fracture non-union. Too often however, in vitro evidence alone of the interaction between hMSCs and the biomaterial of choice is used as justification for continued development of the material into the clinic. Clearly for hMSC-based regenerative medicine to be successful for the treatment of orthopaedic trauma, it is crucial to transplant hMSCs with a suitable carrier that facilitates their survival, optimal proliferation and osteogenic differentiation in vitro and in vivo. This motivated us to evaluate the use of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds produced by fused deposition modeling for the delivery of hMSCs. When hMSCs were cultured on the PCL-TCP scaffolds and imaged by a combination of phase contrast, scanning electron and confocal laser microscopy, we observed five distinct stages of colonization over a 21-day period that were characterized by cell attachment, spreading, cellular bridging, the formation of a dense cellular mass and the accumulation of a mineralized extracellular matrix when induced with osteogenic stimulants. Having established that PCL-TCP scaffolds are able to support hMSC proliferation and osteogenic differentiation, we next tested the in vivo efficacy of hMSC-loaded PCL-TCP scaffolds in nude rat critical-sized femoral defects. We found that fluorescently labeled hMSCs survived in the defect site for up to 3 weeks post-transplantation. However, only 50% of the femoral defects treated with hMSCs responded favorably as determined by new bone volume. As such, we show that verification of hMSC viability and differentiation in vitro is not sufficient to predict the efficacy of transplanted stem cells to consistently promote bone formation in orthotopic defects in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ross River virus (RRV) is a mosquito-borne member of the genus Alphavirus that causes epidemic polyarthritis in humans, costing the Australian health system at least US$10 million annually. Recent progress in RRV vaccine development requires accurate assessment of RRV genetic diversity and evolution, particularly as they may affect the utility of future vaccination. In this study, we provide novel RRV genome sequences and investigate the evolutionary dynamics of RRV from time-structured E2 gene datasets. Our analysis indicates that, although RRV evolves at a similar rate to other alphaviruses (mean evolutionary rate of approx. 8x10(-4) nucleotide substitutions per site year(-1)), the relative genetic diversity of RRV has been continuously low through time, possibly as a result of purifying selection imposed by replication in a wide range of natural host and vector species. Together, these findings suggest that vaccination against RRV is unlikely to result in the rapid antigenic evolution that could compromise the future efficacy of current RRV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart damage caused by acute myocardial infarction (AMI) is a leading cause of death and disability in Australia. Novel therapies are still required for the treatment of this condition due to the poor reparative ability of the heart. As such, cellular therapies that assist in the recovery of heart muscle are of great current interest. Culture expanded mesenchymal stem cells (MSC) represent a stem and progenitor cell population that has been shown to promote tissue recovery in pre-clinical studies of AMI. For MSC-based therapies in the clinic, an intravenous route of administration would ideally be used due to the low cost, ease of delivery and relative safety. The study of MSC migration is therefore clinically relevant for a minimally invasive cell therapy to promote regeneration of damaged tissue. C57BL/6, UBI-GFP-BL/6 and CD44-/-/GFP+/+ mice were utilised to investigate mMSC migration. To assist in murine models of MSC migration, a novel method was used for the isolation of murine MSC (mMSC). These mMSC were then expanded in culture and putative mMSC were positive for Sca-1, CD90.2, and CD44 and were negative for CD45 and CD11b. Furthermore, mMSC from C57BL/6 and UBI-GFP-BL/6 mice were shown to differentiate into cells of the mesodermal lineage. Cells from CD44-/-/GFP+/+ mice were positive for Sca-1 and CD90.2, and negative for CD44, CD45 and CD11b however, these cells were unable to differentiate into adipocytes and chondrocytes and express lineage specific genes, PLIN and ACAN. Analysis of mMSC chemokine receptor (CR) expression showed that although mMSC do express chemokine receptors, (including those specific for chemokines released after AMI), these were low or undetectable by mRNA. However, protein expression could be detected, which was predominantly cytoplasmic. It was further shown that in both healthy (unperturbed) and inflamed tissues, mMSC had very little specific migration and engraftment after intravenous injection. To determine if poor mMSC migration was due to the inability of mMSC to respond to chemotactic stimuli, chemokine expression in bone marrow, skin injury and hearts (healthy and after AMI) was analysed at various time points by quantitative real-time PCR (qRT PCR). Many chemokines were up-regulated after skin biopsy and AMI, but the highest acute levels were found for CXCL12 and CCL7. Due to their high expression in infarcted hearts, the chemokines CXCL12 and CCL7 were tested for their effect on mMSC migration. Despite CR expression at both protein and mRNA levels, migration in response to CXCL12 and CCL7 was low in mMSC cultured on Nunclon plastic. A novel tissue culture plastic technology (UpCellTM) was then used that allowed gentle non-enzymatic dissociation of mMSC, thus preserving surface expression of the CRs. Despite this the in vitro data indicated that CXCL12 fails to induce significant migration ability of mMSC, while CCL7 induces significant, but low-level migration. We speculated this may be because of low levels of surface expression of chemokine receptors. In a strategy to increase cell surface expression of mMSC chemokine receptors and enhance their in vitro and in vivo migration capacity, mMSC were pre-treated with pro-inflammatory cytokines. Increased levels of both mRNA and surface protein expression were found for CRs by pre-treating mMSC with pro-inflammatory cytokines including TNF-á, IFN-ã, IL-1á and IL-6. Furthermore, the chemotactic response of mMSC to CXCL12 and CCL7 was significantly higher with these pretreated cells. Finally, the effectiveness of this type of cell manipulation was demonstrated in vivo, where mMSC pre-treated with TNF-á and IFN-ã showed significantly increased migration in skin injury and AMI models. Therefore this thesis has demonstrated, using in vitro and in vivo models, the potential for prior manipulation of MSC as a possible means for increasing the utility of intravenously delivery for MSC-based cellular therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of “spermostasis,” characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.