120 resultados para MCF-7 cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, β-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with β-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with β-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with β-catenin and E-cadherin from a higher molecular weight complex (~500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, β-catenin or E-cadherin, which were predominantly in a larger molecular weight complex (~2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased β-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and β-catenin during trafficking to the plasma membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous studies have reported associations between IGF-I and other extra cellular matrix (ECM) proteins, including fibronectin (FN), integrins, IGF-binding proteins (IGFBPs) and through IGFBPs, with vitronectin (VN). Nevertheless, the precise nature and mechanisms of these interactions are still being characterised. In this paper, we discuss transglutaminases (TGases) as a constituent of the ECM and provide evidence for the first time that IGF-I is a lysine (K)-donor substrate to TGases. When IGF-I was incubated with an alpha-2 plasmin inhibitor-derived Q peptide in the presence of tissue transglutaminase (TG2), an IGF-I:Q peptide cross-linked species was detected using Western immunoblotting and confirmed by mass spectrometry. Similar findings were observed in the presence of Factor XIIIa (FXIIIa) TGase. To identify the precise location of this K-donor TGase site/s on IGF-I, all the three IGF-I K-sites, individually and collectively (K27, K65 and K68), were substituted to arginine (R) using site-directed mutagenesis. Incubation of these K→R IGF-I analogues with Q peptide in the presence of TG2 or FXIIIa resulted in the absence of cross-linking in IGF-I analogues bearing arginine substitution at site 68. This established that K68 within the IGF-I D-domain was the principal K-donor site to TGases. We further annotated the functional significance of these K→R IGF-I analogues on IGF-I mediated actions. IGF-I analogues with K→R substitution within the D-domain at K65 and K68 hindered migration of MCF-7 breast carcinoma cells and correspondingly reduced PI3-K/AKT activation. Therefore, this study also provides first insights into a possible functional role of the previously uncharacterised IGF-I D-domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some functions are regulated via intracellular signaling cascades, others by involvement of the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, understanding of their functions and the exact nature of these interactions remains incomplete. Methods: IGF-I was PEGylated at its lysine sites - K27, K65 and K68. Binding of PEG-IGF-I to the IGFBPs was analyzed using BIAcore and its ability to activate the IGF-IR was assessed using IGF-IR phosphorylation assay. Furthermore, functional consequences of PEGylating the lysine residues of IGF-I was investigated using cell viability and cell migration assays. In addition, particular downstream signaling pathways regularly implicated in these mechanisms were also dissected using phospho-AKT and phospho-ERK1/2 assays. Results: In this study, IGF-I specifically PEGylated at lysine 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) were employed. Receptor phosphorylation was only reduced by 2-fold with PEG-K65 and PEG-K68 over all the time points tested, and as observed in two cell types, 3T3 fibroblasts and MCF-7 breast cancer cells. PEGylation at K27 resulted in a much larger effect, with more than 10-fold lower activation for 3T3 fibroblasts and a ~3 fold reduced IGF-IR activation for MCF-7 breast cancer cells over 15 minutes. In addition, all PEG-IGF-I variants demonstrated a ten-fold reduction in the association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants completely lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes as compared to IGF-I; in contrast, cell viability was fully preserved. Further investigations into the downstream signaling pathways revealed that the PI3-K/AKT pathway was preferentially affected upon treatment with the PEG-IGF-I variants compared to the MAPK/ERK pathway. Conclusion: PEGylation of IGF-I has an impact on cell migration but not cell viability. General significance: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on its interaction with its receptor as well as key extracellular proteins such as VN and IGFBPs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have established and characterized a series of variant cell lines in which to identify the critical factors associated with E2-induced malignant progression, and the acquisition to tamoxifen resistance in human breast cancer. Sublines of the hormone-dependent MCF-7 cell line (MCF7/MIII and MCF7/LCC1) form stable, invasive, estrogen independent tumors in the mammary fat pads of ovariectomized athymic nude mice. These cells retain expression of both estrogen (ER) and progesterone receptors (PGR), but retain sensitivity to each of the major structural classes of antiestrogens. The tamoxifen-resistant MCF7/LCC2 cells retain sensitivity to the inhibitory effects of the steroidal antiestrogen ICI 182780. By comparing the parental hormone-dependent and variant hormone-independent cells, we have demonstrated an altered expression of some estrogen regulated genes (PGR, pS2, cathepsin D) in the hormone-independent variants. Other genes remain normally estrogen regulated (ER, laminin receptor, EGF-receptor). These data strongly implicate the altered regulation of a specific subset or network of estrogen regulated genes in the malignant progression of human breast cancer. Some of the primary response genes in this network may exhibit dose-response and induction kinetics similar to pS2, which is constitutively upregulated in the MCF7/MIII, MCF7/LCC1 and MCF7/LCC2 cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The orphan nuclear receptor liver receptor homologue-1 (LRH-1) has roles in the development, cholesterol and bile acid homeostasis, and steroidogenesis. It also enhances proliferation and cell cycle progression of cancer cells. In breast cancer, LRH-1 expression is associated with invasive breast cancer; positively correlates with ERα status and aromatase activity; and promotes oestrogen-dependent cell proliferation. However, the mechanism of action of LRH-1 in breast cancer epithelial cells is still not clear. By silencing or over-expressing LRH-1 in ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells, we have demonstrated that LRH-1 promotes motility and cell invasiveness. Similar effects were observed in the non-tumourigenic mammary epithelial cell line, MCF-10A. Remodelling of the actin cytoskeleton and E-cadherin cleavage was observed with LRH-1 over-expression, contributing to increased migratory and invasive properties. Additionally, in LRH-1 over-expressing cells, the truncation of the 120 kDa E-cadherin to the inactive 97 kDa form was observed. These post-translational modifications in E-cadherin may be associated with LRH-1-dependent changes to matrix metalloproteinase 9 expression. These findings suggest a new role of LRH-1 in promoting migration and invasion in breast cancer, independent of oestrogen sensitivity. Therefore, LRH-1 may represent a new target for breast cancer therapeutics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Expression of matrix metalloproteinase-2 (MMP-2), the 72-kd type IV collagenase/gelatinase, by cancer cells has been implicated in metastasis through cancer cell invasion of basement membranes mediated by degradation of collagen IV. However, the abundance of this latent proenzyme in normal tissues and fluids suggests that MMP-2 proenzyme utilization is limited by its physiological activation rather than expression alone. We previously reported activation of this proenzyme by normal and malignant fibroblastoid cells cultured on collagen I (vitrogen) gels. Purpose: Our purposes in this study were 1) to determine whether MMP-2 activation is restricted to the more invasive human breast cancer cell lines and 2) to localize the activating mechanism. Methods: Zymography was used to monitor MMP-2 activation through detection of latent MMP-2 (72 kd) and mature species of smaller molecular weight (59 or 62 kd). Human breast cancer cell lines cultured on plastic, vitrogen, and other matrices were thus screened for MMP- 2 activation. Collagen I-cultured cells were exposed to cycloheximide, a protein synthesis inhibitor, or to protease inhibitors to determine the nature of the MMP-2-activating mechanism. Triton X-114 (TX-114) detergent extracts from cells cultured on collagen I or plastic were incubated with latent MMP-2 and analyzed by zymography to localize the MMP-2 activator. Results: MMP-2 activation was only induced by collagen I culture in the more aggressive, highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines (Hs578T, MDA-MB-436, BT549, MDA-MB-231, MDA- MB-435, MCF-7(ADR)) and was independent of MMP-2 production. MMP-2 activation was detected in cells cultured on collagen I gels but not in those cultured on gelatin gels, Matrigel, or thin layers of collagen I or IV, gelatin, or fibronectin. Collagen-induced activation was specific for the enzyme species MMP-2, since MMP-9, the 92-kd type IV collagenase/gelatinase, was not activatable under similar conditions. MMP-2 activation was inhibited by cycloheximide and was sensitive to a metalloproteinase inhibitor but not to aspartyl, serine, or cysteinyl protease inhibitors. MMP-2 activation was detected in the hydrophobic, plasma membrane-enriched, TX-114 extracts from invasive collagen I-cultured cells. Conclusion: Collagen I-induced MMP-2 activation is restricted to highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines, is independent of MMP-2 production, and is associated with metastatic potential. Our findings are consistent with plasma membrane localization of the activator. Implications: The MMP-2 activation mechanism may represent a new target for diagnosis, prognosis, and treatment of human breast cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction Hydrogels prepared from star-shaped poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSCs). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyze the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via proliferation assays, light microscopy, and immunostaining. Cancer cell lines were then seeded into starPEG-heparin hydrogels functionalized with growth factors as spheroids with HUVECs and MSCs and grown as a tri-culture. Cultures were analyzed via immunostaining and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualized in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. Interaction was visualized between tumours and HUVECs via confocal microscopy. Further studies intend to further optimize and mimic the ECM environment of in-situ tumour angiogenesis. Discussion Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVEC and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14 days, cancer spheroids of 100-200µm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous studies have reported links between insulin-like growth factors (IGFs) and the extra-cellular matrix protein vitronectin (VN). We ourselves have reported that IGF-I binds to VN via IGF-binding proteins (IGFBPs) to stimulate HaCaT and MCF-7 cell migration. Here, we detail the functional evaluation of IGFBP-1, -2, -3, -4 and -6 in the presence and absence of IGF-I and VN. The data presented here, combined with our prior data on IGFBP-5, suggest that IGFBP-3, -4 and -5 are the most effective at stimulating cell migration in combination with IGF-I and VN. In addition, we demonstrate that different regions within IGFBP-3 and -4 are critical for complex formation. Furthermore, we examine whether multi-protein complexes of IGF-I and IGFBPs associated with fibronectin and collagen IV are also able to enhance functional biological responses.