293 resultados para Intelligent Transport Systems
Resumo:
This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.
Resumo:
Background. Digital information is increasingly becoming available on all aspects of the urban landscape, anywhere and any time. Physical objects (c.f. the Internet of Things) and people (c.f. the Social Web) are increasingly infused with actuators, sensors and tagged with a wealth of digital information. Urban Informatics explores these emerging digital layers of the city. However, very little is known about the challenges and new opportunities that these developments may offer to road users. As we gradually spend more time using our mobile devices as well as our car, the tension between appeasing our craving for connectedness and road safety requirements grow farther apart. Objective. The aims of this paper are to identify (a) new opportunities that Urban Informatics research can offer to our future cars and (b) potential benefits to road safety. Methods. 14 Urban Informatics research experts were grouped into seven teams of two to participate in a guided ideation (idea creation) workshop in a driving simulator. They were immersed into different driving scenarios to brainstorm innovative Urban Informatics applications in different driving contexts. This qualitative study was then evaluated in the context of road safety. Outcomes. There is a lack of articulation between Urban Informatics and Road Safety research. Several Urban Informatics applications (e.g., to enhance social interaction between people in urban environments) may provide benefits, rather than threats, towards road safety, provided they are implemented ergonomically and safely. Conclusions. This research initiates a much-needed dialogue between Urban Informatics and Road Safety disciplines, in the context of Intelligent Transport Systems, before the fast approaching digital wave invades our cars. The dialogue will help to avoid driver distraction issues similar to mobile phones use in cars. As such, it provides valuable information for future regulators and policy makers in charge of shaping our future road transport landscape.
Resumo:
Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs.
Resumo:
Intelligent Transport Systems (ITS) resembles the infrastructure for ubiquitous computing in the car. It encompasses a) all kinds of sensing technologies within vehicles as well as road infrastructure, b) wireless communication protocols for the sensed information to be exchanged between vehicles (V2V) and between vehicles and infrastructure (V2I), and c) appropriate intelligent algorithms and computational technologies that process these real-time streams of information. As such, ITS can be considered a game changer. It provides the fundamental basis of new, innovative concepts and applications, similar to the Internet itself. The information sensed or gathered within or around the vehicle has led to a variety of context-aware in-vehicular technologies within the car. A simple example is the Anti-lock Breaking System (ABS), which releases the breaks when sensors detect that the wheels are locked. We refer to this type of context awareness as vehicle/technology awareness. V2V and V2I communication, often summarized as V2X, enables the exchange and sharing of sensed information amongst cars. As a result, the vehicle/technology awareness horizon of each individual car is expanded beyond its observable surrounding, paving the way to technologically enhance such already advanced systems. In this chapter, we draw attention to those application areas of sensing and V2X technologies, where the human (driver), the human’s behavior and hence the psychological perspective plays a more pivotal role. The focal points of our project are illustrated in Figure 1: In all areas, the vehicle first (1) gathers or senses information about the driver. Rather than to limit the use of such information towards vehicle/technology awareness, we see great potential for applications in which this sensed information is then (2) fed back to the driver for an increased self-awareness. In addition, by using V2V technologies, it can also be (3) passed to surrounding drivers for an increased social awareness, or (4), pushed even further, into the cloud, where it is collected and visualized for an increased, collective urban awareness within the urban community at large, which includes all city dwellers.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
The use of intelligent transport systems is proliferating across the Australian road network, particularly on major freeways. New technology allows a greater range of signs and messages to be displayed to drivers. While there has been a long history of human factors analyses of signage, no evaluation has been conducted on this novel, sometimes dynamic, signage or potential interactions when co-located. The purpose of this driving simulator study was to investigate drivers’ behavioural changes and comprehension resulting from the co-location of Lane Use Management Systems with static signs and (Enhanced) Variable Message Signs on Queensland motorways. A section of motorway was simulated, and nine scenarios were developed which presented a combination of signage cases across levels of driving task complexity. Two higher-risk road user groups were targeted for this research on an advanced driving simulator: older (65+ years, N=21) and younger (18-22 years, N=20) drivers. Changes in sign co-location and task complexity had small effect on driver comprehension of the signs and vehicle dynamics variables, including difference with the posted speed limit, headway, standard deviation of lane keeping and brake jerks. However, increasing the amount of information provided to drivers at a given location (by co-locating several signs) increased participants’ gaze duration on the signs. With co-location of signs and without added task complexity, a single gaze was over 2s for more than half of the population tested for both groups, and up to 6 seconds for some individuals.
Resumo:
This paper assesses Intelligent Transportation Systems (ITS) to identify safety systems that are most likely to reduce driver errors at railway crossings. ITS technologies have been integrated in order to develop improved evaluation tools to reduce crashes at railway crossings. Although emerging technologies, knowledge, innovative interventions have been introduced to change driver behaviour, there is a lack of research on the impact of integrating ITS technologies and transportation simulation on drivers. The outcomes of ITS technologies for complementing traditional signage were compared with those of current safety systems (passive and active) at railway crossings. Three ITS technologies are compared with current treatments, in terms of compliance rate and vehicle speed profiles. It is found that ITS technologies improve compliance rate by 17~30% and also encourage drivers to slow down earlier compared to current passive and active crossings when there is a train approaching the railway crossings.
Resumo:
Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in the vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled 'Intelligent-Transport-Systems to improve safety at road/rail crossings'. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.
Resumo:
Following eco-driving instructions can reduce fuel consumption between 5 to 20% on urban roads with manual cars. The majority of Australian cars have an automatic transmission gear-box. It is therefore of interest to verify whether current eco-driving instructions are e cient for such vehicles. In this pilot study, participants (N=13) drove an instrumented vehicle (Toyota Camry 2007) with an automatic transmission. Fuel consumption of the participants was compared before and after they received simple eco-driving instructions. Participants drove the same vehicle on the same urban route under similar tra c conditions. We found that participants drove at similar speeds during their baseline and eco-friendly drives, and reduced the level of their accelerations and decelerations during eco-driving. Fuel consumption decreased for the complete drive by 7%, but not on the motorway and inclined sections of the study. Gas emissions were estimated with the VT-micro model, and emissions of the studied pollutants (CO2, CO, NOX and HC) were reduced, but no di erence was observed for CO2 on the motorway and inclined sections. The di erence for the complete lap is 3% for CO2. We have found evidence showing that simple eco-driving instructions are e cient in the case of automatic transmission in an urban environment, but towards the lowest values of the spectrum of fuel consumption reduction from the di erent eco-driving studies.
Resumo:
There is a continuing need to improve safety at Railway Level Crossings (RLX) particularly those that do not have gates and lights regulating traffic flow. A number of Intelligent Transport System (ITS) interventions have been proposed to improve drivers’ awareness and reduce errors in detecting and responding appropriately at level crossings. However, as with other technologies, successful implementation and ultimately effectiveness rests with the acceptance of the technology by the end user. In the current research, four focus groups were held (n=38) with drivers in metropolitan and regional locations in Queensland to examine their perceptions of potential in-vehicle and road-based ITS interventions to improve safety at RLX. The findings imply that further development of the ITS interventions, in particular the design and related promotion of the final product, must consider ease of use, usefulness and relative cost.
Resumo:
The social cost of road injury and fatalities is still unacceptable. The driver is often mainly responsible for road crashes, therefore changing the driver behaviour is one of the most important and most challenging priority in road transport. This paper presents three innovative visions that articulate the potential of using Vehicle to Vehicle (V2V) communication for supporting the exchange of social information amongst drivers. We argue that there could be tremendous benefits in socialising cars to influence human driving behaviours for the better and that this aspect is still relevant in the age of looming autonomous cars. Our visions provide theoretical grounding how V2V infrastructure and emerging human–machine interfaces (HMI) could persuade drivers to: (i) adopt better (e.g. greener) driving practices, (ii) reduce drivers aggressiveness towards pro-social driving behaviours, and (iii) reduce risk-taking behaviour in young, particularly male, adults. The visions present simple but powerful concepts that reveal ‘good’ aspects of the driver behaviour to other drivers and make them contagious. The use of self-efficacy, social norms, gamification theories and social cues could then increase the likelihood of a widespread adoption of such ‘good’ driving behaviours.
Resumo:
Weaving sections, a common design of motorways, require extensive lane-change manoeuvres. Numerous studies have found that drivers tend to make their lane changes as soon as they enter the weaving section, as the traffic volume increases. Congestion builds up as a result of this high lane-changing concentration. Importantly, such congestion also limits the use of existing infrastructure, the weaving section downstream. This behaviour thus affects both safety and operational aspects. The potential tool for managing motorways effectively and efficiently is cooperative intelligent transport systems (C-ITS). This research investigates a lane-change distribution advisory application based on C-ITS for weaving vehicles in weaving sections. The objective of this research is to alleviate the lane-changing concentration problem by coordinating weaving vehicles to ensure that such lane-changing activities are evenly distributed over the existing weaving length. This is achieved by sending individual messages to drivers based on their location to advise them when to start their lane change. The research applied a microscopic simulation in AIMSUN to evaluate the proposed strategy’s effectiveness in a one-sided ramp weave. The proposed strategy was evaluated using different weaving advisory proportions, traffic demands and penetration rates. The evaluation revealed that the proposed lane-changing advisory has the potential to significantly improve delay.
Resumo:
This study examines the benefits of Cooperative Intelligent Transport Systems (C-ITS) in weaving sections. The research proposes a lane-changing advisory application to alleviate the lane-changing concentration in weaving sections by coordinating weaving vehicles. While non-weaving vehicles travel as normal, weaving vehicles are monitored and advised through personalized messages based on their destination lane. The findings of this research, derived from a microscopic simulation in AIMSUN, reveal that the proposed strategy has the potential to improve delay significantly and that it can be applied to any existing one-sided weaving sections.
Resumo:
It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.