91 resultados para Integer programming, Constraint programming, Sugarcane rail, Job shop
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.
Resumo:
Train scheduling is a complex and time consuming task of vital importance. To schedule trains more accurately and efficiently than permitted by current techniques a novel hybrid job shop approach has been proposed and implemented. Unique characteristics of train scheduling are first incorporated into a disjunctive graph model of train operations. A constructive algorithm that utilises this model is then developed. The constructive algorithm is a general procedure that constructs a schedule using insertion, backtracking and dynamic route selection mechanisms. It provides a significant search capability and is valid for any objective criteria. Simulated Annealing and Local Search meta-heuristic improvement algorithms are also adapted and extended. An important feature of these approaches is a new compound perturbation operator that consists of many unitary moves that allows trains to be shifted feasibly and more easily within the solution. A numerical investigation and case study is provided and demonstrates that high quality solutions are obtainable on real sized applications.
Resumo:
Because of the bottlenecking operations in a complex coal rail system, millions of dollars are costed by mining companies. To handle this issue, this paper investigates a real-world coal rail system and aims to optimise the coal railing operations under constraints of limited resources (e.g., limited number of locomotives and wagons). In the literature, most studies considered the train scheduling problem on a single-track railway network to be strongly NP-hard and thus developed metaheuristics as the main solution methods. In this paper, a new mathematical programming model is formulated and coded by optimization programming language based on a constraint programming (CP) approach. A new depth-first-search technique is developed and embedded inside the CP model to obtain the optimised coal railing timetable efficiently. Computational experiments demonstrate that high-quality solutions are obtainable in industry-scale applications. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and specific criteria. Keywords Train scheduling · Rail transportation · Coal mining · Constraint programming
Resumo:
In the paper, the flow-shop scheduling problem with parallel machines at each stage (machine center) is studied. For each job its release and due date as well as a processing time for its each operation are given. The scheduling criterion consists of three parts: the total weighted earliness, the total weighted tardiness and the total weighted waiting time. The criterion takes into account the costs of storing semi-manufactured products in the course of production and ready-made products as well as penalties for not meeting the deadlines stated in the conditions of the contract with customer. To solve the problem, three constructive algorithms and three metaheuristics (based one Tabu Search and Simulated Annealing techniques) are developed and experimentally analyzed. All the proposed algorithms operate on the notion of so-called operation processing order, i.e. the order of operations on each machine. We show that the problem of schedule construction on the base of a given operation processing order can be reduced to the linear programming task. We also propose some approximation algorithm for schedule construction and show the conditions of its optimality.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics
Resumo:
Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE)