483 resultados para Information search – models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Smart State initiative requires both improved education and training, panicularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first-year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dualdegree programs that include business. The role models most often identified for their choice of field of study were parents,followed by teachers and peers, with females identifying more role models than males. For entrepreneurship, students' role models were parents andpeers,followed by famous persons and teachers. Males and females identified similar numbers of role models, but males found starting a business more desirable and more feasible, and reponed higher entrepreneurial intention. The implications of these findings for Smart State policy are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information System (IS) success may be the most arguable and important dependent variable in the IS field. The purpose of the present study is to address IS success by empirically assess and compare DeLone and McLean’s (1992) and Gable’s et al. (2008) models of IS success in Australian Universities context. The two models have some commonalities and several important distinctions. Both models integrate and interrelate multiple dimensions of IS success. Hence, it would be useful to compare the models to see which is superior; as it is not clear how IS researchers should respond to this controversy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents a survey of authorisation models and considers their ‘fitness-for-purpose’ in facilitating information sharing. Network-supported information sharing is an important technical capability that underpins collaboration in support of dynamic and unpredictable activities such as emergency response, national security, infrastructure protection, supply chain integration and emerging business models based on the concept of a ‘virtual organisation’. The article argues that present authorisation models are inflexible and poorly scalable in such dynamic environments due to their assumption that the future needs of the system can be predicted, which in turn justifies the use of persistent authorisation policies. The article outlines the motivation and requirement for a new flexible authorisation model that addresses the needs of information sharing. It proposes that a flexible and scalable authorisation model must allow an explicit specification of the objectives of the system and access decisions must be made based on a late trade-off analysis between these explicit objectives. A research agenda for the proposed Objective-based Access Control concept is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the problems of three carrier phase ambiguity resolution (TCAR) and position estimation (PE) are generalized as real time GNSS data processing problems for a continuously observing network on large scale. In order to describe these problems, a general linear equation system is presented to uniform various geometry-free, geometry-based and geometry-constrained TCAR models, along with state transition questions between observation times. With this general formulation, generalized TCAR solutions are given to cover different real time GNSS data processing scenarios, and various simplified integer solutions, such as geometry-free rounding and geometry-based LAMBDA solutions with single and multiple-epoch measurements. In fact, various ambiguity resolution (AR) solutions differ in the floating ambiguity estimation and integer ambiguity search processes, but their theoretical equivalence remains under the same observational systems models and statistical assumptions. TCAR performance benefits as outlined from the data analyses in some recent literatures are reviewed, showing profound implications for the future GNSS development from both technology and application perspectives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most information retrieval (IR) models treat the presence of a term within a document as an indication that the document is somehow "about" that term, they do not take into account when a term might be explicitly negated. Medical data, by its nature, contains a high frequency of negated terms - e.g. "review of systems showed no chest pain or shortness of breath". This papers presents a study of the effects of negation on information retrieval. We present a number of experiments to determine whether negation has a significant negative affect on IR performance and whether language models that take negation into account might improve performance. We use a collection of real medical records as our test corpus. Our findings are that negation has some affect on system performance, but this will likely be confined to domains such as medical data where negation is prevalent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many researchers have investigated and modelled aspects of Web searching. A number of studies have explored the relationships between individual differences and Web searching. However, limited studies have explored the role of users’ cognitive styles in determining Web searching behaviour. Current models of Web searching have limited consideration of users’ cognitive styles. The impact of users’ cognitive style on Web searching and their relationships are little understood or represented. Individuals differ in their information processing approaches and the way they represent information, thus affecting their performance. To create better models of Web searching we need to understand more about user’s cognitive style and their Web search behaviour, and the relationship between them. More rigorous research is needed in using more complex and meaningful measures of relevance; across a range of different types of search tasks and different populations of Internet users. The project further explores the relationships between the users’ cognitive style and their Web searching. The project will develop a model depicting the relationships between a user’s cognitive style and their Web searching. The related literature, aims and objectives and research design are discussed.