532 resultados para Image processing.
Resumo:
This paper proposes a generic decoupled imagebased control scheme for cameras obeying the unified projection model. The scheme is based on the spherical projection model. Invariants to rotational motion are computed from this projection and used to control the translational degrees of freedom. Importantly we form invariants which decrease the sensitivity of the interaction matrix to object depth variation. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6-DOF robotic platform.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Applications of stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics, industrial automation and stereomicroscopy. A key issue in stereo vision is that of image matching, or identifying corresponding points in a stereo pair. The difference in the positions of corresponding points in image coordinates is termed the parallax or disparity. When the orientation of the two cameras is known, corresponding points may be projected back to find the location of the original object point in world coordinates. Matching techniques are typically categorised according to the nature of the matching primitives they use and the matching strategy they employ. This report provides a detailed taxonomy of image matching techniques, including area based, transform based, feature based, phase based, hybrid, relaxation based, dynamic programming and object space methods. A number of area based matching metrics as well as the rank and census transforms were implemented, in order to investigate their suitability for a real-time stereo sensor for mining automation applications. The requirements of this sensor were speed, robustness, and the ability to produce a dense depth map. The Sum of Absolute Differences matching metric was the least computationally expensive; however, this metric was the most sensitive to radiometric distortion. Metrics such as the Zero Mean Sum of Absolute Differences and Normalised Cross Correlation were the most robust to this type of distortion but introduced additional computational complexity. The rank and census transforms were found to be robust to radiometric distortion, in addition to having low computational complexity. They are therefore prime candidates for a matching algorithm for a stereo sensor for real-time mining applications. A number of issues came to light during this investigation which may merit further work. These include devising a means to evaluate and compare disparity results of different matching algorithms, and finding a method of assigning a level of confidence to a match. Another issue of interest is the possibility of statistically combining the results of different matching algorithms, in order to improve robustness.
Resumo:
This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored.
Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images
Resumo:
In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
The School of Electrical and Electronic Systems Engineering of Queensland University of Technology (like many other universities around the world) has recognised the importance of complementing the teaching of signal processing with computer based experiments. A laboratory has been developed to provide a "hands-on" approach to the teaching of signal processing techniques. The motivation for the development of this laboratory was the cliche "What I hear I remember but what I do I understand." The laboratory has been named as the "Signal Computing and Real-time DSP Laboratory" and provides practical training to approximately 150 final year undergraduate students each year. The paper describes the novel features of the laboratory, techniques used in the laboratory based teaching, interesting aspects of the experiments that have been developed and student evaluation of the teaching techniques
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
This paper presents a key based generic model for digital image watermarking. The model aims at addressing an identified gap in the literature by providing a basis for assessing different watermarking requirements in various digital image applications. We start with a formulation of a basic watermarking system, and define system inputs and outputs. We then proceed to incorporate the use of keys in the design of various system components. Using the model, we also define a few fundamental design and evaluation parameters. To demonstrate the significance of the proposed model, we provide an example of how it can be applied to formally define common attacks.
Resumo:
Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.
Resumo:
In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.