565 resultados para Human engineering.
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
Cell sheets can be used to produce neo-tissue with mature extracellular matrix. However, extensive contraction of cell sheets remains a problem. We devised a technique to overcome this problem and applied it to tissue engineer a dermal construct. Human dermal fibroblasts were cultured with poly(lactic-co-glycolic acid)-collagen meshes and collagen-hyaluronic acid foams. Resulting cell sheets were folded over the scaffolds to form dermal constructs. Human keratinocytes were cultured on these dermal constructs to assess their ability to support bilayered skin regeneration. Dermal constructs produced with collagen-hyaluronic acid foams showed minimal contraction, while those with poly(lactic-co-glycolic acid)-collagen meshes curled up. Cell proliferation and metabolic activity profiles were characterized with PicoGreen and AlamarBlue assays, respectively. Fluorescent labeling showed high cell viability and F-actin expression within the constructs. Collagen deposition was detected by immunocytochemistry and electron microscopy. Transforming Growth Factor-alpha and beta1, Keratinocyte Growth Factor and Vascular Endothelial Growth Factor were produced at various stages of culture, measured by RT-PCR and ELISA. These results indicated that assimilating cell sheets with mechanically stable scaffolds could produce viable dermal-like constructs that do not contract. Repeated enzymatic treatment cycles for cell expansion is unnecessary, while the issue of poor cell seeding efficiency in scaffolds is eliminated.
Resumo:
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.
Resumo:
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
Mesenchymal Stem Cells (MSC) are frequently incorporated into osteochondral implants and cell seeding is often facilitated with hydrogels which exert a profound influence on the chondrogenic differentiation of MSC. An attempt was made to elucidate this effect by comparing the chondrogenic differentiation of Bone Marrow Stromal Cells (BMSC) in fibrin and fibrin alginate composites. A biphasic osteochondral model which simulated the native in vivo environment was employed in the study. In the first stage of the experiment, BMSC was encapsulated in fibrin, Fibrin Alginate 0.3% (FA0.3) and 0.6% (FA0.6). Chondrogenic differentiation within these cell-hydrogel pellets was compared against that of standard cell pellets under inductive conditions and the matrices which supported chondrogenesis were used in the cartilage phase of biphasic constructs. Neo-cartilage growth was monitored in these cocultures. It was observed that hydrogel encapsulation influenced mesenchymal condensation which preceded chondrogenic differentiation. Early cell agglomeration was observed in fibrin as compared to fibrin alginate composites. These fibrin encapsulated cells differentiated into chondrocytes which secreted aggrecan and collagen II. When the alginate content rose from 0.3 to 0.6%, chondrogenic differentiation declined with a reduction in the expression of collagen II and aggrecan. Fibrin and FA0.3 were tested in the cartilage phase of the biphasic osteochondral constructs and the former supported superior cartilage growth with higher cellularity, total Glycosaminoglycan (GAG) and collagen II levels. The FA0.3 cartilage phase was found to be fragmented and partially calcified. The use of fibrin for cartilage repair was advocated as it facilitated BMSC chondrogenesis and cartilaginous growth in an osteochondral environment.
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.
Resumo:
The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.
Resumo:
The ideal dermal matrix should be able to provide the right biological and physical environment to ensure homogenous cell and extracellular matrix (ECM) distribution, as well as the right size and morphology of the neo-tissue required. Four natural and synthetic 3D matrices were evaluated in vitro as dermal matrices, namely (1) equine collagen foam, TissuFleece®, (2) acellular dermal replacement, Alloderm®, (3) knitted poly(lactic-co-glycolic acid) (10:90)–poly(-caprolactone) (PLGA–PCL) mesh, (4) chitosan scaffold. Human dermal fibroblasts were cultured on the specimens over 3 weeks. Cell morphology, distribution and viability were assessed by electron microscopy, histology and confocal laser microscopy. Metabolic activity and DNA synthesis were analysed via MTS metabolic assay and [3H]-thymidine uptake, while ECM protein expression was determined by immunohistochemistry. TissuFleece®, Alloderm® and PLGA–PCL mesh supported cell attachment, proliferation and neo-tissue formation. However, TissuFleece® contracted to 10% of the original size while Alloderm® supported cell proliferation predominantly on the surface of the material. PLGA–PCL mesh promoted more homogenous cell distribution and tissue formation. Chitosan scaffolds did not support cell attachment and proliferation. These results demonstrated that physical characteristics including porosity and mechanical stability to withstand cell contraction forces are important in determining the success of a dermal matrix material.
Resumo:
The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced—stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced—induced for 2 weeks before seeding into scaffolds; and (3) uninduced—cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.