48 resultados para Heavy metal ions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project was the first comprehensive assessment of heavy metals to be conducted in the sediments of Northern Moreton Bay since the 1970s and found that shipping and shipping related activities contributed significantly to the level of sediment contamination in the area. The study was also used to develop and test new methods of assessing heavy metal sediment quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of heavy metal bioavailability in sediments is complex because of the number of partial extraction methods available for the assessment and the general lack of certified reference materials. This study evaluates five different extraction methodologies to ascertain the relative strengths and weaknesses of each method. The results are then compared to previously published work to ascertain the most effective partial extraction technique, which was established to be dilute (0.75 – 1 M) nitric acid solutions. These results imply that single reagent; weak acid extractions provide a better assessment of potentially bioavailable metals than the chelating agents used in sequential extraction methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 , a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm-1, assigned to the symmetric stretching mode of the AsO43- anion. Raman bands at 809 and 819 cm-1 are assigned to the antisymmetric stretching mode of AsO43- . The sulphate anion is characterised by bands at 1000 cm-1 (ν1), and at 1031, 1082 and 1139 cm-1 (ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm-1 with bands observed at 2850, 2868, 2918 cm-1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm-1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu2+, Pb2+). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3 = 2.3, Na2O/SiO2 = 1.4, H2O/Na2O = 50, crystallization time 8 h, crystallization temperature 95 �C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g�1 for Cu2+, Pb2+ with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu2+, Pb2+ from water with metallic contaminants and can be separated easily after a magnetic process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This practice-led research project explores how humour can be employed to develop a methodology for examining the socio-political dimensions of contemporary art practice. This research aims to identify and elaborate on how using the evasive strategies and elliptical frameworks associated with ideas of the absurd and nonsense can lead to new ways of understanding the nexus between social, political and cultural practices. This is achieved primarily through an examination of the art practices of Marcel Duchamp, Bruce Nauman, and Martin Kippenberger. These artists contextualise this research because in different ways they all engage with humour as a device to critique conventional notions of how art can be read or understood. Using these strategies the project aims to demonstrate new ways for considering how visual art can use humour to creatively and critically investigate the relationships between art and the social.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used electronic structure calculations to investigate the 1,2-dehydration of alcohols as a model for water loss during the pyrolysis of carbohydrates found in biomass. Reaction enthalpies and energy barriers have been calculated for neat alcohols, protonated alcohols and alcohols complexed to alkali metal ions (Li + and Na +). We have estimated pre-exponential A factors in order to obtain gas phase rate constants. For neat alcohols, the barrier to 1,2-dehydration is about 67 kcal mol -1, which is consistent with the limited experimental data. Protonation and metal complexation significantly reduce this activation barrier and thus, facilitate more rapid reaction. With the addition of alkali metals, the rate of dehydration can increase by a factor of 10 8 while addition of a proton can lead to an increase of a factor of 10 23.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (,22 mg/m3 or ,2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 1016C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research established innovative methods and a predictive model to evaluate water quality using the trace element and heavy metal concentrations of drinking water from the greater Brisbane area. Significantly, the combined use of Inductively Coupled Plasma - Mass Spectrometry and Chemometrics can be used worldwide to provide comprehensive, rapid and affordable analyses of elements in drinking water that can have a considerable impact on human health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, enrichment factors and Principal Component Analysis –Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.