40 resultados para HUMAN TH17 CELLS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As we stand at the beginning of the 21st century and behold the world before us, it seems that we are living in a time of profound change. Everywhere we look change seems afoot, demolishing our traditional securities and hastily building new ones in their place. Modern medical science has been an integral part of this change. It is not possible to ignore the advances of modern medicine nor the realities of scientific uncertainties for they are part of the shared context of our lives today. I In the past 50 years we have witnessed the discovery of DNA and more recently the mapping of the human genome, the birth of the world's first in-vitro fertilisation baby, followed by thousands worldwide in the period since, the discovery of human stem cells and the birth of Dolly the cloned sheep in Scotland. Furthermore, the processes of globalisation have ensured that an event that occurs on one side of the globe becomes an item on the evening news on the other side, creating the impression that all change takes place on our doorstep. Some of these events have provoked deep angst in the community, sparking public debate over the ethics of science and the boundaries to be imposed by law. All of these developments have changed the realm of the possible. While these advances in medical science spark debate in the developed countries, in less developed countries high rates of infectious diseases and infant and maternal mortality and the challenges of access to adequate food and clean water are priorities, highlighting international differences in health care. This article explores these differences through an analysis of globalisation and reproduction. It seeks to analyse both the meaning of globalisation and the impact of globalising trends on health laws and policies as regulators of women's health within the global village.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past decade we have come to appreciate that the microenvironment has the potential for major influence on the cancer cell. An extreme case for this occurs when the cancer cell changes its environment in the context of metastasis, where this may in part underpin the altered biology of cells in metasases. Increasing evidence suggests that changes in the cellular microenvironment contribute to tumourigenesis and metastasis, but the molecular basis of these alterations is not well understood. Reactive stroma provides oncogenic signals to facilitate tumourigenesis and metastasis—co-implantation of normal human epithelial cells in vivo with irradiated, carcinogen treated, or cancer derived fibroblasts leads to the enhancement or formation of malignant tumours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The invasion of human malignant melanoma cells into the extracellular matrix (ECM) involves the accumulation of proteases at sites of ECM degradation where activation of matrix metalloproteases (MMP) occurs. Here, we show that when membrane type 1 MMP (MT-MMP) was overexpressed in RPMI7951 human melanoma cells, the cells made contact with the ECM, activated soluble and ECM-bound MMP-2, and degraded and invaded the ECM. Further experiments demonstrated the importance of localization of the MT-MMP to invadopodia. Overexpression of MT-MMP without invadopodial localization caused activation of soluble MMP-2, but did not facilitate ECM degradation or cell invasiveness. Up-regulation of endogenous MT-MMP with concanavalin A caused activation of MMP-2. However, concanavalin A treatment prevented invadopodial localization of MT-MMP and ECM degradation. Neither a truncated MT-MMP mutant lacking transmembrane (TM) and cytoplasmic domains (ΔTM(MT-MMP)), nor a chimeric MT-MMP containing the interleukin 2 receptor α chain (IL-2R) TM and cytoplasmic domains (ΔTM(MT-MMP)/TM(IL-2R)) were localized to invadopodia or exhibited ECM degradation. Furthermore, a chimera of the TM/cytoplasmic domain of MT-MMP (TM(MT-MMP)) with tissue inhibitor of MMP 1 (TIMP-1/TM(MT- MMP)) directed the TIMP-1 molecule to invadopodia. Thus, the MT-MMP TM/cytoplasmic domain mediates the spatial organization of MT-MMP into invadopodia and subsequent degradation of the ECM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is distinct among autoimmune diseases because of its association with circulating autoantibodies reactive against host DNA. The precise role that anti-DNA antibodies play in SLE pathophysiology remains to be elucidated, and potential applications of lupus autoantibodies in cancer therapy have not previously been explored. We report the unexpected finding that a cell-penetrating lupus autoantibody, 3E10, has potential as a targeted therapy for DNA repair–deficient malignancies. We find that 3E10 preferentially binds DNA single-strand tails, inhibits key steps in DNA single-strand and double-strand break repair, and sensitizes cultured tumor cells and human tumor xenografts to DNA-damaging therapy, including doxorubicin and radiation. Moreover, we demonstrate that 3E10 alone is synthetically lethal to BRCA2-deficient human cancer cells and selectively sensitizes such cells to low-dose doxorubicin. Our results establish an approach to cancer therapy that we expect will be particularly applicable to BRCA2-related malignancies such as breast, ovarian, and prostate cancers. In addition, our findings raise the possibility that lupus autoantibodies may be partly responsible for the intrinsic deficiencies in DNA repair and the unexpectedly low rates of breast, ovarian, and prostate cancers observed in SLE patients. In summary, this study provides the basis for the potential use of a lupus anti-DNA antibody in cancer therapy and identifies lupus autoantibodies as a potentially rich source of therapeutic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article considers the integral role played by patent law in respect of stem cell research. It highlights concerns about commercialization, access to essential medicines and bioethics. The article maintains that there is a fundamental ambiguity in the Patents Act 1990 (Cth) as to whether stem cell research is patentable subject matter. There is a need to revise the legislation in light of the establishment of the National Stem Cell Centre and the passing of the Research Involving Embryos Act 2002 (Cth). The article raises concerns about the strong patent protection secured by the Wisconsin Alumni Research Foundation and Geron Corporation in respect of stem cell research in the United States. It contends that a number of legal reforms could safeguard access to stem cell lines, and resulting drugs and therapies. Finally, this article explores how ethical concerns are addressed within the framework of the European Biotechnology Directive. It examines the decision of the European Patent Office in relation to the so-called Edinburgh patent, and the inquiry of the European Group on Ethics in Science and New Technologies into The Ethical Aspects of Patenting Involving Human Stem Cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.