190 resultados para Graduation conditions
Resumo:
Fire design is an essential part of the overall design procedure of structural steel members and systems. Conventionally, increased fire rating is provided simply by adding more plasterboards to Light gauge Steel Frame (LSF) stud walls, which is inefficient. However, recently Kolarkar & Mahendran (2008) developed a new composite wall panel system, where the insulation was located externally between the plasterboards on both sides of the steel wall frame. Numerical and experimental studies were undertaken to investigate the structural and fire performance of LSF walls using the new composite panels under axial compression. This paper presents the details of the numerical studies of the new LSF walls and the results. It also includes brief details of the experimental studies. Experimental and numerical results were compared for the purpose of validating the developed numerical model. The paper also describes the structural and fire performance of the new LSF wall system in comparison to traditional wall systems using cavity insulation.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
Adherence to medicines is a major determinant of the effectiveness of medicines. However, estimates of non-adherence in the older-aged with chronic conditions vary from 40 to 75%. The problems caused by non-adherence in the older-aged include residential care and hospital admissions, progression of the disease, and increased costs to society. The reasons for non-adherence in the older-aged include items related to the medicine (e.g. cost, number of medicines, adverse effects) and those related to person (e.g. cognition, vision, depression). It is also known that there are many ways adherence can be increased (e.g. use of blister packs, cues). It is assumed that interventions by allied health professions, including a discussion of adherence, will improve adherence to medicines in the older aged but the evidence for this has not been reviewed. There is some evidence that telephone counselling about adherence by a nurse or pharmacist does improve adherence, short- and long-term. However, face-to-face intervention counselling at the pharmacy, or during a home visit by a pharmacist, has shown variable results with some studies showing improved adherence and some not. Education programs during hospital stays have not been shown to improve adherence on discharge, but education programs for subjects with hypertension have been shown to improve adherence. In combination with an education program, both counselling and a medicine review program have been shown to improve adherence short-term in the older-aged. Thus, there are many unanswered questions about the most effective interventions to promote adherence. More studies are needed to determine the most appropriate interventions by allied health professions, and these need to consider the disease state, demographics, and socio-economic status of the older-aged subject, and the intensity and duration of intervention needed.
Resumo:
An investigation of cylindrical iron rods burning in pressurised oxygen under microgravity conditions is presented. It has been shown that, under similar experimental conditions, the melting rate of a burning, cylindrical iron rod is higher in microgravity than in normal gravity by a factor of 1.8 ± 0.3. This paper presents microanalysis of quenched samples obtained in a microgravity environment in a 2.0 s duration drop tower facility in Brisbane, Australia. These images indicate that the solid/liquid interface is highly convex in reduced gravity, compared to the planar geometry typically observed in normal gravity, which increases the contact area between liquid and solid phases by a factor of 1.7 ± 0.1. Thus, there is good agreement between the proportional increase in solid/liquid interface surface area and melting rate in microgravity. This indicates that the cause of the increased melting rates for cylindrical iron rods burning in microgravity is altered interfacial geometry at the solid/liquid interface.
Resumo:
Drivers are known to be optimistic about their risk of crash involvement, believing that they are less likely to be involved in a crash than other drivers. However, little comparative research has been conducted among other road users. In addition, optimism about crash risk is conceptualised as applying only to an individual’s assessment of his or her personal risk of crash involvement. The possibility that the self-serving nature of optimism about safety might be generalised to the group-level as a cyclist or a pedestrian, i.e., becoming group-serving rather than self-serving, has been overlooked in relation to road safety. This study analysed a subset of data collected as part of a larger research project on the visibility of pedestrians, cyclists and road workers, focusing on a set of questionnaire items administered to 406 pedestrians, 838 cyclists and 622 drivers. The items related to safety in various scenarios involving drivers, pedestrians and cyclists, allowing predictions to be derived about group differences in agreement with items based on the assumption that the results would exhibit group-serving bias. Analysis of the responses indicated that specific hypotheses about group-serving interpretations of safety and responsibility were supported in 22 of the 26 comparisons. When the nine comparisons relevant to low lighting conditions were considered separately, seven were found to be supported. The findings of the research have implications for public education and for the likely acceptance of messages which are inconsistent with current assumptions and expectations of pedestrians and cyclists. They also suggest that research into group-serving interpretations of safety, even for temporary roles rather than enduring groups, could be fruitful. Further, there is an implication that gains in safety can be made by better educating road users about the limitations of their visibility and the ramifications of this for their own road safety, particularly in low light.
Resumo:
Background Little or no research has been done in the overweight child on the relative contribution of multisensory information to maintain postural stability. Therefore, the purpose of this study was to investigate postural balance control under normal and experimentally altered sensory conditions in normal-weight versus overweight children. Methods Sixty children were stratified into a younger (7–9 yr) and an older age group (10–12 yr). Participants were also classified as normal-weight (n = 22) or overweight (n = 38), according to the international BMI cut-off points for children. Postural stability was assessed during quiet bilateral stance in four sensory conditions (eyes open or closed, normal or reduced plantar sensation), using a Kistler force plate to quantify COP dynamics. Coefficients of variation were calculated as well to describe intra-individual variability. Findings Removal of vision resulted in systematically higher amounts of postural sway, but no significant BMI group differences were demonstrated across sensory conditions. However, under normal conditions lower plantar cutaneous sensation was associated with higher COP velocities and maximal excursion of the COP in the medial-lateral direction for the overweight group. Regardless of condition, higher variability was shown in the overweight children within the 7–9 yr old subgroup for postural sway velocity, and more specifically medial–lateral velocity. Interpretation In spite of these subtle differences, results did not establish any clear underlying sensory organization impairments that may affect standing balance performance in overweight children compared to normal-weight peers. Consequently, it is believed that other factors account for overweight children's functional balance deficiencies.
Resumo:
Introduction: Little is known about the risk perceptions and attitudes of healthcare personnel, especially of emergency prehospital medical care personnel, regarding the possibility of an outbreak or epidemic event. Problem: This study was designed to investigate pre-event knowledge and attitudes of a national sample of the emergency prehospital medical care providers in relation to a potential human influenza pandemic, and to determine predictors of these attitudes. Methods: Surveys were distributed to a random, cross-sectional sample of 20% of the Australian emergency prehospital medical care workforce (n = 2,929), stratified by the nine services operating in Australia, as well as by gender and location. The surveys included: (1) demographic information; (2) knowledge of influenza; and (3) attitudes and perceptions related to working during influenza pandemic conditions. Multiple logistic regression models were constructed to identify predictors of pandemic-related risk perceptions. Results: Among the 725 Australian emergency prehospital medical care personnel who responded, 89% were very anxious about working during pandemic conditions, and 85% perceived a high personal risk associated with working in such conditions. In general, respondents demonstrated poor knowledge in relation to avian influenza, influenza generally, and infection transmission methods. Less than 5% of respondents perceived that they had adequate education/training about avian influenza. Logistic regression analyses indicate that, in managing the attitudes and risk perceptions of emergency prehospital medical care staff, particular attention should be directed toward the paid, male workforce (as opposed to volunteers), and on personnel whose relationship partners do not work in the health industry. Conclusions: These results highlight the potentially crucial role of education and training in pandemic preparedness. Organizations that provide emergency prehospital medical care must address this apparent lack of knowledge regarding infection transmission, and procedures for protection and decontamination. Careful management of the perceptions of emergency prehospital medical care personnel during a pandemic is likely to be critical in achieving an effective response to a widespread outbreak of infectious disease.
Resumo:
Background: Bone healing is sensitive to the initial mechanical conditions with tissue differentiation being determined within days of trauma. Whilst axial compression is regarded as stimulatory, the role of interfragmentary shear is controversial. The purpose of this study was to determine how the initial mechanical conditions produced by interfragmentary shear and torsion differ from those produced by axial compressive movements. ----- ----- Methods: The finite element method was used to estimate the strain, pressure and fluid flow in the early callus tissue produced by the different modes of interfragmentary movement found in vivo. Additionally, tissue formation was predicted according to three principally different mechanobiological theories. ----- ----- Findings: Large interfragmentary shear movements produced comparable strains and less fluid flow and pressure than moderate axial interfragmentary movements. Additionally, combined axial and shear movements did not result in overall increases in the strains and the strain magnitudes were similar to those produced by axial movements alone. Only when axial movements where applied did the non-distortional component of the pressure–deformation theory influence the initial tissue predictions. ----- ----- Interpretation: This study found that the mechanical stimuli generated by interfragmentary shear and torsion differed from those produced by axial interfragmentary movements. The initial tissue formation as predicted by the mechanobiological theories was dominated by the deformation stimulus.
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
In this study, a discussion of the fluid dynamics in the attic space is reported, focusing on its transient response to sudden and linear changes of temperature along the two inclined walls. The transient behaviour of an attic space is relevant to our daily life. The instantaneous and non-instantaneous (ramp) heating boundary condition is applied on the sloping walls of the attic space. A theoretical understanding of the transient behaviour of the flow in the enclosure is performed through scaling analysis. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. A time scale for the heating-up of the whole cavity together with the heat transfer scales through the inclined walls has also been obtained through scaling analysis. All scales are verified by the numerical simulations.