58 resultados para Godfrey, of Bouillon, ca. 1060-1100


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2•2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm-1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm-1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm-1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm-1 and at 417, 434 and 482 cm-1 are assigned to the SO42- 4 and 2 bending modes, respectively. Raman bands at 337 and 373 cm-1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman spectra of natrouranospinite complemented with infrared spectra were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3- units and of water molecules. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared spectroscopy have been used to study the mineral pharmacolite Ca(HAsO4)•2H2O. The mineral is characterised by an intense Raman band at 865 cm-1 assigned to the (AsO4)3- symmetric stretching mode. The equivalent infrared band is found at 864 cm-1. The low intensity Raman band at 886 cm-1 provides evidence for (AsO3OH)2-. A series of overlapping bands in the 300 to 450 cm-1 are attributed to ν2 and ν4 bending modes. Prominent Raman bands at around 3187 cm-1 are assigned to water OH stretching vibrations and the two sharp bands at 3425 and 3526 cm-1 to the OH stretching vibrations of (HOAsO3) units.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 , a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm-1, assigned to the symmetric stretching mode of the AsO43- anion. Raman bands at 809 and 819 cm-1 are assigned to the antisymmetric stretching mode of AsO43- . The sulphate anion is characterised by bands at 1000 cm-1 (ν1), and at 1031, 1082 and 1139 cm-1 (ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm-1 with bands observed at 2850, 2868, 2918 cm-1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm-1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.