130 resultados para Fuzzy distance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an open railway access market, the Infrastructure Provider (IP), upon the receipts of service bids from the Train Service Providers (TSPs), assigns track access rights according to its own business objectives and the merits of the bids; and produces the train service timetable through negotiations. In practice, IP chooses to negotiate with the TSPs one by one in such a sequence that IP optimizes its objectives. The TSP bids are usually very complicated, containing a large number of parameters in different natures. It is a difficult task even for an expert to give a priority sequence for negotiations from the contents of the bids. This study proposes the application of fuzzy ranking method to compare and prioritize the TSP bids in order to produce a negotiation sequence. The results of this study allow investigations on the behaviors of the stakeholders in bid preparation and negotiation, as well as evaluation of service quality in the open railway market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Less cooperative iris identification systems at a distance and on the move often suffers from poor resolution. The lack of pixel resolution significantly degrades the iris recognition performance. Super-resolution has been considered to enhance resolution of iris images. This paper proposes a pixelwise super-resolution technique to reconstruct a high resolution iris image from a video sequence of an eye. A novel fusion approach is proposed to incorporate information details from multiple frames using robust mean. Experiments on the MBGC NIR portal database show the validity of the proposed approach in comparison with other resolution enhancement techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation, selection and finally decision making are all among important issues, which engineers face in long run of projects. Engineers implement mathematical and nonmathematical methods to make accurate and correct decisions, whenever needed. As extensive as these methods are, effects of any selected method on outputs achieved and decisions made are still suspicious. This is more controversial and challengeable, where evaluation is made among non-quantitative alternatives. In civil engineering and construction management problems, criteria include both quantitative and qualitative ones, such as aesthetic, construction duration, building and operation costs, and environmental considerations. As the result, decision making frequently takes place among non-quantitative alternatives. It should be noted that traditional comparison methods, including clear-cut and inflexible mathematics, have always been criticized. This paper demonstrates a brief review of traditional methods of evaluating alternatives. It also offers a new decision making method using, fuzzy calculations. The main focus of this research is some engineering issues, which have flexible nature and vague borders. Suggested method provides analyzability of evaluation for decision makers. It is also capable to overcome multi criteria and multi-referees problems. In order to ease calculations, a program named DeMA is introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.