529 resultados para FINITE-STATE MACHINES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an investigation on the cause of severe vibration problem of a coach with four-cylinder engine running at an idle state using vibration and impact hammer modal experiments to obtain the main vibration frequency components and the natural characteristics of the coach. The vibration results indicate that the main vibration component comes from the vibration transmitted from the engine to the chassis frame, which is closely related with the engine idle speed. Based on structural simulation analysis of the coach’s chassis frame and comparison with modal testing, the coach severe vibration problem was due to coupling resonance between the engine idle frequency and the fourth natural frequency of the chassis frame. The solution to eliminate the vibration problem is provided by changing the local structure stiffness of the chassis frame. The contribution of this paper lies in providing a solution to solve similar problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation of a rectangular block into an annular wedge is studied with respect to the state of swelling interior to the block. Nonuniform swelling fields are shown to generate these flexure deformations in the absence of resultant forces and bending moments. Analytical expressions for the deformation fields demonstrate these effects for both incompressible and compressible generalizations of conventional hyperelastic materials. Existing results in the absence of a swelling agent are recovered as special cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deep transverse metatarsal ligaments (DTML) play an important role in stabilizing the metatarsal bones and manipulating foot transverse arch deformation. However, the biomechanical research about DTML in the foot maneuver is quite few. Due to the difficulties and lack of better measurement technology for these ligaments experimental monitor, the load transfer mechanism and internal stress state also hadn't been well addressed. The purpose of this study was to develop a detailing foot finite element model including DTML tissues, to investigate the mechanical response of DTML during the landing condition. The DTML was considered as hyperelastic material model was used to represent the nonlinear and nearly incompressible nature of the ligament tissue. From the simulation results, it is clearly to find that the peak maiximal principal stress of DTML was between the third and fourth metatarsals. Meanwhile, it seems the DTML in the middle position experienced higher tension than the sides DTML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.