203 resultados para Distributed Social Networks
Resumo:
Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.
Resumo:
Within the communicative space online Social Network Sites (SNS) afford, Niche Social Networks Sites (NSNS) have emerged around particular geographic, demographic or topic-based communities to provide what broader SNS do not: specified and targeted content for an engaged and interested community. Drawing on a research project developed at the Queensland University of Technology in conjunction with the Australian Smart Services Cooperative Research Centre that produced an NSNS based around Adventure Travel, this paper outlines the main drivers for community creation and sustainability within NSNS. The paper asks what factors motivate users to join and stay with these sites and what, if any, common patterns can be noted in their formation. It also outlines the main barriers to online participation and content creation in NSNS, and the similarities and differences in SNS and NSNS business models. Having built a community of 100 registered members, the staywild.com.au project was a living laboratory, enabling us to document the steps taken in producing a NSNS and cultivating and retaining active contributors. The paper incorporates observational analysis of user-generated content (UGC) and user profile submissions, statistical analysis of site usage, and findings from a survey of our membership pool in noting areas of success and of failure. In drawing on our project in this way we provide a template for future iterations of NSNS initiation and development across various other social settings: not only niche communities, but also the media and advertising with which they engage and interact. Positioned within the context of online user participation and UGC research, our paper concludes with a discussion of the ways in which the tools afforded by NSNS extend earlier understandings of online ‘communities of interest’. It also outlines the relevance of our research to larger questions about the diversity of the social media ecology.
Resumo:
Online social networks can be modelled as graphs; in this paper, we analyze the use of graph metrics for identifying users with anomalous relationships to other users. A framework is proposed for analyzing the effectiveness of various graph theoretic properties such as the number of neighbouring nodes and edges, betweenness centrality, and community cohesiveness in detecting anomalous users. Experimental results on real-world data collected from online social networks show that the majority of users typically have friends who are friends themselves, whereas anomalous users’ graphs typically do not follow this common rule. Empirical analysis also shows that the relationship between average betweenness centrality and edges identifies anomalies more accurately than other approaches.
Resumo:
The mass media and emergency services organisations routinely gather information and disseminate it to the public. During disaster situations both the media and emergency services require acute situational awareness. New social media technologies offer opportunities to enhance situational awareness by crowd-sourcing information using real and virtual social networks. This paper documents how real and virtual social networks were used by a reporter and by members of the public to gather and disseminate emergency information during the flash flood disaster in Toowoomba and the Lockyer Valley in January 2011 and in the days and weeks after the disaster.
Resumo:
This thesis improves the process of recommending people to people in social networks using new clustering algorithms and ranking methods. The proposed system and methods are evaluated on the data collected from a real life social network. The empirical analysis of this research confirms that the proposed system and methods achieved improvements in the accuracy and efficiency of matching and recommending people, and overcome some of the problems that social matching systems usually suffer.
Resumo:
In this paper, we propose a semi-supervised approach of anomaly detection in Online Social Networks. The social network is modeled as a graph and its features are extracted to detect anomaly. A clustering algorithm is then used to group users based on these features and fuzzy logic is applied to assign degree of anomalous behavior to the users of these clusters. Empirical analysis shows effectiveness of this method.
Resumo:
Collaboration between faculty and librarians is an important topic of discussion and research among academic librarians. These partnerships between faculty and librarians are vital for enabling students to become lifelong learners through their information literacy education. This research developed an understanding of academic collaborators by analyzing a community college faculty's teaching social networks. A teaching social network, an original term generated in this study, is comprised of communications that influence faculty when they design and deliver their courses. The communication may be formal (e.g., through scholarly journals and professional development activities) and informal (e.g., through personal communication) through their network elements. Examples of the elements of a teaching social network may be department faculty, administration, librarians, professional development, and students. This research asked 'What is the nature of faculty's teaching social networks and what are the implications for librarians?' This study moves forward the existing research on collaboration, information literacy, and social network analysis. It provides both faculty and librarians with added insight into their existing and potential relationships. This research was undertaken using mixed methods. Social network analysis was the quantitative data collection methodology and the interview method was the qualitative technique. For the social network analysis data, a survey was sent to full-time faculty at Las Positas College, a community college, in California. The survey gathered the data and described the teaching social networks for faculty with respect to their teaching methods and content taught. Semi-structured interviews were conducted following the survey with a sub-set of survey respondents to understand why specific elements were included in their teaching social networks and to learn of ways for librarians to become an integral part of the teaching social networks. The majority of the faculty respondents were moderately influenced by the elements of their network except the majority of the potentials were weakly influenced by the elements in their network in their content taught. The elements with the most influence on both teaching methods and content taught were students, department faculty, professional development, and former graduate professors and coursework. The elements with the least influence on both aspects were public or academic librarians, and social media. The most popular roles for the elements were conversations about teaching, sharing ideas, tips for teaching, insights into teaching, suggestions for ways of teaching, and how to engage students. Librarians' weakly influenced faculty in their teaching methods and their content taught. The motivating factors for collaboration with librarians were that students learned how to research, students' research projects improved, faculty saved time by having librarians provide the instruction to students, and faculty built strong working relationships with librarians. The challenges of collaborating with librarians were inadequate teaching techniques used when librarians taught research orientations and lack of time. Ways librarians can be more integral in faculty's teaching social networks included: more workshops for faculty, more proactive interaction with faculty, and more one-on-one training sessions for faculty. Some of the recommendations for the librarians from this study were develop a strong rapport with faculty, librarians should build their services in information literacy from the point of view of the faculty instead of from the librarian perspective, use staff development funding to attend conferences and workshops to improve their teaching, develop more training sessions for faculty, increase marketing efforts of the librarian's instructional services, and seek grant opportunities to increase funding for the library. In addition, librarians and faculty should review the definitions of information literacy and move from a skills based interpretation to a learning process.
Resumo:
Enterprise Social Networks continue to be adopted by organisations looking to increase collaboration between employees, customers and industry partners. Offering a varied range of features and functionality, this technology can be distinguished by the underlying business models that providers of this software deploy. This study identifies and describes the different business models through an analysis of leading Enterprise Social Networks: Yammer, Chatter, SharePoint, Connections, Jive, Facebook and Twitter. A key contribution of this research is the identification of consumer and corporate models as extreme approaches. These findings align well with research on the adoption of Enterprise Social Networks that has discussed bottom-up and top-down approaches. Of specific interest are hybrid models that wrap a corporate model within a consumer model and may, therefore, provide synergies on both models. From a broader perspective, this can be seen as the merging of the corporate and consumer markets for IT products and services.
Resumo:
Arid systems are markedly different from non-arid systems. This distinctiveness extends to arid-social networks, by which we mean social networks which are influenced by the suite of factors driving arid and semi-arid regions. Neither the process of how aridity interacts with social structure, nor what happens as a result of this interaction, is adequately understood. This paper postulates three relative characteristics which make arid-social networks distinct: that they are tightly bound, are hierarchical in structure and, hence, prone to power abuses, and contain a relatively higher proportion of weak links, making them reactive to crisis. These ideas were modified from workshop discussions during 2006. Although they are neither tested nor presented as strong beliefs, they are based on the anecdotal observations of arid-system scientists with many years of experience. This paper does not test the ideas, but rather examines them in the context of five arid-social network case studies with the aim of hypotheses building. Our cases are networks related to pastoralism, Aboriginal outstations, the ‘Far West Coast Aboriginal Enterprise Network’ and natural resources in both the Lake-Eyre basin and the Murray–Darling catchment. Our cases highlight that (1) social networks do not have clear boundaries, and that how participants perceive their network boundaries may differ from what network data imply, (2) although network structures are important determinants of system behaviour, the role of participants as individuals is still pivotal, (3) and while in certain arid cases weak links are engaged in crisis, the exact structure of all weak links in terms of how they place participants in relation to other communities is what matters.
Resumo:
This study explores the professional development strategies of digital content professionals in Australian micro businesses. This thesis presents the argument that as these professionals are working in cutting edge creative fields where digital technology drives ongoing change, formal education experiences may be less important than for other professionals, and that specific types of online and face-to-face socially mediated informal learning strategies may be critical to currency. This thesis documents the findings of a broad survey of industry professionals' learning needs and development strategies, in conjunction with rich data from in-depth interviews and social network analyses.
Resumo:
Organisations employ Enterprise Social Networks (ESNs) (such as Yammer) expecting better intra-organisational communication and collaboration. However, ESNs are struggling to gain momentum and wide adoption among users. Promoting user participation is a challenge, particularly in relation to lurkers – the silent ESN members who do not contribute any content. Building on behaviour change research, we propose a three-route model consisting of the central, peripheral and coercive routes of influence that depict users’ cognitive strategies, and we examine how management interventions (e.g. sending promotional emails) impact users’ beliefs and (consequent) posting and lurking behaviours in ESNs. Furthermore, we identify users’ salient motivations to lurk or post. We employ a multi-method research design to conceptualise, operationalise and validate the research model. This study has implications for academics and practitioners regarding the nature, patterns and outcomes of management interventions in prompting ESN.
Resumo:
Enterprise social networks provide benefits especially for knowledge-intensive work as they enable communication, collaboration and knowledge exchange. These platforms should therefore lead to increased adoption and use by knowledge-intensive workers such as consultants or indeed researchers. Our interest is in ascertaining whether scientific researchers use enterprise social networks as part of their work practices. This focus is motivated by an apparent schism between a need for researchers to exchange knowledge and profile themselves, and the aversion to sharing breakthrough ideas and joining in an ever-increasing publishing and marketing game. We draw on research on academic work practices and impression management to develop a model of academics’ ESN usage for impression management tactics. We describe important constructs of our model, offer strategies for their operationalization and give an outlook to our ongoing empirical study of the use of an ESN platform by 20 schools across six faculties at an Australian university.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
In this work, we present the challenges associated with the two-way recommendation methods in social networks and the solutions. We discuss them from the perspective of community-type social networks such as online dating networks.