163 resultados para Differential connection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a systematic analysis of genotype-specific melanocyte (MC) UVR responses in transgenic mouse melanoma models along with tumour penetrance and comparative histopathology. pRb or p53 pathway mutations cooperated with NrasQ61K to transform MCs. We previously reported that MCs migrate from the follicular outer root sheath into the epidermis after neonatal UVR. Here, we found that Arf or p53 loss markedly diminished this response. Despite this, mice carrying these mutations developed melanoma with very early age of onset after neonatal UVR. Cdk4R24C did not affect the MC migration. Instead, independent of UVR exposure, interfollicular dermal MCs were more prevalent in Cdk4R24C mice. Subsequently, in adulthood, these mutants developed dermal MC proliferations reminiscent of superficial congenital naevi. Two types of melanoma were observed in this model. The location and growth pattern of the first was consistent with derivation from the naevi, while the second appeared to be of deep dermal origin. In animals carrying the Arf or p53 defects, no naevi were detected, with all tumours ostensibly skipping the benign precursor stage in progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing court data suggest that adult Indigenous offenders are more likely than non-Indigenous defendants to be sentenced to prison but once imprisoned generally receive shorter terms. Using findings from international and Australian multivariate statistical analyses, this paper reviews the three key hypotheses advanced as plausible explanations for these differences: 1) differential involvement, 2) negative discrimination, 3) positive discrimination. Overall, prior research shows strong support for the differential involvement thesis, some support for positive discrimination and little foundation for negative discrimination in the sentencing of Indigenous defendants. Where discrimination is found, we argue that this may be explained by the lack of a more complete set of control variables in researchers’ multivariate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of instructors have recently adopted social network sites (SNSs) for learning. However, the learning design of SNSs often remains at a preliminary level similar to a personal log book because it does not properly include reflective learning elements such as individual reflection and collaboration. This article looks at the reflective learning process and the public writing process as a way of improving the quality of reflective learning on SNSs. It proposes a reflective learning model on SNSs based on two key pedagogical concepts for social networking: individual expression and collaborative connection. It is expected that the model would be helpful for instructors in designing a reflective learning process on SNSs in an effective and flexible way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the findings of an exploratory study into the perceptions held by students regarding the use of criterion-referenced assessment in an undergraduate differential equations class. Students in the class were largely unaware of the concept of criterion referencing and of the various interpretations that this concept has among mathematics educators. Our primary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. Quantitative data and qualitative feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, the manner in which they actually approached the assessment activity was not altered as a result of the use of explicitly communicated grading criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.