82 resultados para Device
Resumo:
Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.
Resumo:
Defence organisations perform information security evaluations to confirm that electronic communications devices are safe to use in security-critical situations. Such evaluations include tracing all possible dataflow paths through the device, but this process is tedious and error-prone, so automated reachability analysis tools are needed to make security evaluations faster and more accurate. Previous research has produced a tool, SIFA, for dataflow analysis of basic digital circuitry, but it cannot analyse dataflow through microprocessors embedded within the circuit since this depends on the software they run. We have developed a static analysis tool that produces SIFA compatible dataflow graphs from embedded microcontroller programs written in C. In this paper we present a case study which shows how this new capability supports combined hardware and software dataflow analyses of a security critical communications device.
Resumo:
In this work, we present the development of a Pt/graphene/SiC device for hydrogen gas sensing. A single layer of graphene was deposited on 6H-SiC via chemical vapor deposition. The presence of graphene C-C bonds was observed via X-ray photoelectron spectroscopy analysis. Current-voltage characteristics of the device were measured at the presence of hydrogen at different temperatures, from 25°C to 170°C. The dynamic response of the device was recorded towards hydrogen gas at an optimum temperature of 130°C. A voltage shift of 191 mV was recorded towards 1% hydrogen at −1 mA constant current.
Resumo:
Medical industries have brought Information Technology (IT) in their systems for both patients and medical staffs due to the numerous benefits of IT we experience at presently. Moreover, the Mobile healthcare (M-health) system has been developed as the first step of Ubiquitous Health Environment (UHE). With the mobility and multi-functions, M-health system will be able to provide more efficient and various services for both doctors and patients. Due to the invisible feature of mobile signals, hackers have easier access to hospital networks than wired network systems. This may result in several security incidents unless security protocols are well implemented. In this paper, user authentication and authorization procedures will applied as a featured component at each level of M-health systems inthe hospital environment. Accordingly, M-health system in the hospital will meet the optimal requirements as a countermeasure to its vulnerabilities.
Resumo:
A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.
Resumo:
New types of control devices for videogames have emerged and expanded the demographics of the game playing public, yet little is known about which populations of gamers prefer which style of interaction and why. This paper presents data from a study that seeks to clarify the influence the control interface has on the play experience. Three commercial control devices were categorised using an existing typology, according to how the interface maps physical control inputs with the virtual gameplay actions. The devices were then used in a within-groups experimental design aimed at measuring differences in play experience across 64 participants. Descriptive analysis is undertaken on the performance, play experience and preference results for each device. Potential explanations for these results are discussed, as well as the direction of future work.
Resumo:
Objectives: To investigate the efficacy of progestin treatment to achieve pathological complete response (pCR) in patients with complex atypical endometrial hyperplasia (CAH) or early endometrial adenocarcinoma (EC). Methods: A systematic search identified 3245 potentially relevant citations. Studies containing less than ten eligible CAH or EC patients in either oral or intrauterine treatment arm were excluded. Only information from patients receiving six or more months of treatment and not receiving other treatments was included. Weighted proportions of patients achieving pCR were calculated using R software. Results: Twelve studies met the selection criteria. Eleven studies reported treatment of patients with oral (219 patients, 117 with CAH, 102 with grade 1 Stage I EC) and one reported treatment of patients with intrauterine progestin (11 patients with grade 1 Stage IEC). Overall, 74% (95% confidence interval [CI] 65-81%) of patients with CAH and 72% (95% CI 62-80%) of patients with grade 1 Stage I EC achieved a pCR to oral progestin. Disease progression while on oral treatment was reported for 6/219 (2.7%), and relapse after initial complete response for 32/159 (20.1%) patients. The weighted mean pCR rate of patients with grade 1 Stage I EC treated with intrauterine progestin from one prospective pilot study and an unpublished retrospective case series from the Queensland Centre of Gynaecologic Oncology (QCGC) was 68% (95% CI 45- 86%). Conclusions: There is a lack of high quality evidence for the efficacy of progestin in CAH or EC. The available evidence however suggests that treatment with oral or intrauterine progestin is similarly effective. The risk of progression during treatment is small but longer follow-up is required. Evidence from prospective controlled clinical trials is warranted to establish how the efficacy of progestin for the treatment of CAH and EC can be improved further.