364 resultados para Dataset


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bactericide triclosan has found wide-spread use in e.g. soaps, deodorants and toothpastes. Recent in vitro and in vivo studies indicate that triclosan might exert adverse effects in humans. Triclosan has previously been shown to be present in human plasma and milk at concentrations that are well correlated to the use of personal care products containing triclosan. In this study we investigated the influence of age, gender, and the region of residence on triclosan concentrations in pooled samples of Australian human blood serum. The results showed no influence of region of residence on the concentrations of triclosan. There was a small but significant influence of age and gender on the serum triclosan concentrations, which were higher in males than in females, and highest in the group of 31–45 year old males and females. However, overall there was a lack of pronounced differences in the triclosan concentrations within the dataset, which suggests that the exposure to triclosan among different groups of the Australian population is relatively homogenous. A selection of the dataset was compared with previous measurements of triclosan concentrations in human plasma from Sweden, where the use of triclosan is expected to be low due to consumer advisories. The triclosan concentrations were a factor of 2 higher in Australian serum than in Swedish plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Currently used Trauma and Injury Severity Score (TRISS) coefficients, which measure probability of survival (Ps), were derived from the Major Trauma Outcome Study (MTOS) in 1995 and are now unlikely to be optimal. This study aims to estimate new TRISS coefficients using a contemporary database of injured patients presenting to emergency departments in the United States; and to compare these against the MTOS coefficients.---------- Methods: Data were obtained from the National Trauma Data Bank (NTDB) and the NTDB National Sample Project (NSP). TRISS coefficients were estimated using logistic regression. Separate coefficients were derived from complete case and multistage multiple imputation analyses for each NTDB and NSP dataset. Associated Ps over Injury Severity Score values were graphed and compared by age (adult ≥ 15 years; pediatric < 15 years) and injury mechanism (blunt; penetrating) groups. Area under the Receiver Operating Characteristic curves was used to assess coefficients’ predictive performance.---------- Results: Overall 1,072,033 NTDB and 1,278,563 weighted NSP injury events were included, compared with 23,177 used in the original MTOS analyses. Large differences were seen between results from complete case and imputed analyses. For blunt mechanism and adult penetrating mechanism injuries, there were similarities between coefficients estimated on imputed samples, and marked divergences between associated Ps estimated and those from the MTOS. However, negligible differences existed between area under the receiver operating characteristic curves estimates because the overwhelming majority of patients had minor trauma and survived. For pediatric penetrating mechanism injuries, variability in coefficients was large and Ps estimates unreliable.---------- Conclusions: Imputed NTDB coefficients are recommended as the TRISS coefficients 2009 revision for blunt mechanism and adult penetrating mechanism injuries. Coefficients for pediatric penetrating mechanism injuries could not be reliably estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes the common factor structure of US, German, and Japanese Government bond returns. Unlike previous studies, we formally take into account the presence of country-specific factors when estimating common factors. We show that the classical approach of running a principal component analysis on a multi-country dataset of bond returns captures both local and common influences and therefore tends to pick too many factors. We conclude that US bond returns share only one common factor with German and Japanese bond returns. This single common factor is associated most notably with changes in the level of domestic term structures. We show that accounting for country-specific factors improves the performance of domestic and international hedging strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principal Topic: For forward thinking companies, the environment may represent the ''biggest opportunity for enterprise and invention the industrial world has ever seen'' (Cairncross 1990). Increasing awareness of environmental and sustainability issues through media including the promotion of Al Gore's ''An Inconvenient Truth'' has seen increased awareness of environmental and sustainability issues and increased demand for business processes that reduce detrimental environmental impacts of global development (Dean & McMullen 2007). The increased demand for more environmentally sensitive products and services represents an opportunity for the development of ventures that seek to satisfy this demand through entrepreneurial action. As a consequence, increasing recent market developments in renewable energy, carbon emissions, fuel cells, green building, and other sectors suggest an increasing importance of opportunities for environmental entrepreneurship (Dean and McMullen 2007) and increasingly important area of business activity (Schaper 2005). In the last decade in particular, big business has sought to develop a more ''sustainability/ green friendly'' orientation as a response to public pressure and increased government legislation and policy to improve environmental performance (Cohen and Winn 2007). Whilst much of the literature and media is littered with examples of sustainability practices of large firms, nascent and young sustainability firms have only recently begun generating strong research and policy interest (Shepherd, Kuskova and Patzelt 2009): not only for their potential to generate above average financial performance and returns owing to a greater popularity and demand towards sustainability products and services offerings, but also for their intent to lessen environmental impacts, and to provide a more accurate reflection of the ''true cost'' of market offerings taking into account carbon and environmental impacts. More specifically, researchers have suggested that although the previous focus has been on large firms and their impact on the environment, the estimated collective impact of entries and exits of nascent and young firms in development is substantial and could outweigh the combined environmental impact of large companies (Hillary, 2000). Therefore, it may be argued that greater attention should be paid to nascent and young firms and researching sustainability practices, for both their impact in reducing environmental impacts and potential higher financial performance. Whilst acknowledging this research only uses the first wave of a four year longitudinal study of nascent and young firms, it can still begin to provide initial analysis on which to continue further research. The aim of this paper therefore is to provide an overview of the emerging literature in sustainable entrepreneurship and to present some selected preliminary results from the first wave of the data collection, with comparison, where appropriate, of sustainable and firms that do not fulfil this criteria. ''One of the key challenges in evaluating sustainability entrepreneurship is the lack of agreement in how it is defined'' (Schaper, 2005: 10). Some evaluate sustainable entrepreneurs simply as one category of entrepreneurs with little difference between them and traditional entrepreneurs (Dees, 1998). Other research recognises values-based sustainable enterprises requiring a unique perspective (Parrish, 2005). Some see the environmental or sustainable entrepreneurship is a subset of social entrepreneurship (Cohen & Winn, 2007; Dean & McMullen, 2007) whilst others see it as a separate, distinct theory (Archer 2009). Following one of the first definitions of sustainability developed by the Brundtland Commission (1987) we define sustainable entrepreneurship as firms which ''seek to meet the needs and aspirations of the present without compromising the ability to meet those of the future''. ---------- Methodology/Key Propositions: In this exploratory paper we investigate sustainable entrepreneurship using Cohen et al.'s (2008) framework to identify strategies of nascent and young entrepreneurial firms. We use data from The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE). This study shares the general empirical approach with PSED studies in the US (Reynolds et al 1994; Reynolds & Curtin 2008). The overall study uses samples of 727 nascent (not yet operational) firms and another 674 young firms, the latter being in an operational stage but less than four years old. To generate the sub sample of sustainability firms, we used content analysis techniques on firm titles, descriptions and product descriptions provided by respondents. Two independent coders used a predefined codebook developed from our review of the sustainability entrepreneurship literature (Cohen et al. 2009) to evaluate the content based on terms such as ''sustainable'' ''eco-friendly'' ''renewable energy'' ''environment'' amongst others. The inter-rater reliability was checked and the Kappa's co-efficient was found to be within the acceptable range (0.746). 85 firms fulfilled the criteria given for inclusion in the sustainability cohort. ---------- Results and Implications: The results for this paper are based on Wave one of the CAUSEE survey which has been completed and the data is available for analysis. It is expected that the findings will assist in beginning to develop an understanding of nascent and young firms that are driven to contribute to a society which is sustainable, not just from an economic perspective (Cohen et al 2008), but from an environmental and social perspective as well. The CAUSEE study provides an opportunity to compare the characteristics of sustainability entrepreneurs with entrepreneurial firms without a stated environmental purpose, which constitutes the majority of the new firms created each year, using a large scale novel longitudinal dataset. The results have implications for Government in the design of better conditions for the creation of new business, firms who assist sustainability in developing better advice programs in line with a better understanding of their needs and requirements, individuals who may be considering becoming entrepreneurs in high potential arenas and existing entrepreneurs make better decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principal Topic: Entrepreneurship is key to employment, innovation and growth (Acs & Mueller, 2008), and as such, has been the subject of tremendous research in both the economic and management literatures since Solow (1957), Schumpeter (1934, 1943), and Penrose (1959). The presence of entrepreneurs in the economy is a key factor in the success or failure of countries to grow (Audretsch and Thurik, 2001; Dejardin, 2001). Further studies focus on the conditions of existence of entrepreneurship, influential factors invoked are historical, cultural, social, institutional, or purely economic (North, 1997; Thurik 1996 & 1999). Of particular interest, beyond the reasons behind the existence of entrepreneurship, are entrepreneurial survival and good ''performance'' factors. Using cross-country firm data analysis, La Porta & Schleifer (2008) confirm that informal micro-businesses provide on average half of all economic activity in developing countries. They find that these are utterly unproductive compared to formal firms, and conclude that the informal sector serves as a social security net ''keep[ing] millions of people alive, but disappearing over time'' (abstract). Robison (1986), Hill (1996, 1997) posit that the Indonesian government under Suharto always pointed to the lack of indigenous entrepreneurship , thereby motivating the nationalisation of all industries. Furthermore, the same literature also points to the fact that small businesses were mostly left out of development programmes because they were supposed less productive and having less productivity potential than larger ones. Vial (2008) challenges this view and shows that small firms represent about 70% of firms, 12% of total output, but contribute to 25% of total factor productivity growth on average over the period 1975-94 in the industrial sector (Table 10, p.316). ---------- Methodology/Key Propositions: A review of the empirical literature points at several under-researched questions. Firstly, we assess whether there is, evidence of small family-business entrepreneurship in Indonesia. Secondly, we examine and present the characteristics of these enterprises, along with the size of the sector, and its dynamics. Thirdly, we study whether these enterprises underperform compared to the larger scale industrial sector, as it is suggested in the literature. We reconsider performance measurements for micro-family owned businesses. We suggest that, beside productivity measures, performance could be appraised by both the survival probability of the firm, and by the amount of household assets formation. We compare micro-family-owned and larger industrial firms' survival probabilities after the 1997 crisis, their capital productivity, then compare household assets of families involved in business with those who do not. Finally, we examine human and social capital as moderators of enterprises' performance. In particular, we assess whether a higher level of education and community participation have an effect on the likelihood of running a family business, and whether it has an impact on households' assets level. We use the IFLS database compiled and published by RAND Corporation. The data is a rich community, households, and individuals panel dataset in four waves: 1993, 1997, 2000, 2007. We now focus on the waves 1997 and 2000 in order to investigate entrepreneurship behaviours in turbulent times, i.e. the 1997 Asian crisis. We use aggregate individual data, and focus on households data in order to study micro-family-owned businesses. IFLS data covers roughly 7,600 households in 1997 and over 10,000 households in 2000, with about 95% of 1997 households re-interviewed in 2000. Households were interviewed in 13 of the 27 provinces as defined before 2001. Those 13 provinces were targeted because accounting for 83% of the population. A full description of the data is provided in Frankenberg and Thomas (2000), and Strauss et alii (2004). We deflate all monetary values in Rupiah with the World Development Indicators Consumer Price Index base 100 in 2000. ---------- Results and Implications: We find that in Indonesia, entrepreneurship is widespread and two thirds of households hold one or several family businesses. In rural areas, in 2000, 75% of households run one or several businesses. The proportion of households holding both a farm and a non farm business is higher in rural areas, underlining the reliance of rural households on self-employment, especially after the crisis. Those businesses come in various sizes from very small to larger ones. The median business production value represents less than the annual national minimum wage. Figures show that at least 75% of farm businesses produce less than the annual minimum wage, with non farm businesses being more numerous to produce the minimum wage. However, this is only one part of the story, as production is not the only ''output'' or effect of the business. We show that the survival rate of those businesses ranks between 70 and 82% after the 1997 crisis, which contrasts with the 67% survival rate for the formal industrial sector (Ter Wengel & Rodriguez, 2006). Micro Family Owned Businesses might be relatively small in terms of production, they also provide stability in times of crisis. For those businesses that provide business assets figures, we show that capital productivity is fairly high, with rates that are ten times higher for non farm businesses. Results show that households running a business have larger family assets, and households are better off in urban areas. We run a panel logit model in order to test the effect of human and social capital on the existence of businesses among households. We find that non farm businesses are more likely to appear in households with higher human and social capital situated in urban areas. Farm businesses are more likely to appear in lower human capital and rural contexts, while still being supported by community participation. The estimation of our panel data model confirm that households are more likely to have higher family assets if situated in urban area, the higher the education level, the larger the assets, and running a business increase the likelihood of having larger assets. This is especially true for non farm businesses that have a clearly larger and more significant effect on assets than farm businesses. Finally, social capital in the form of community participation also has a positive effect on assets. Those results confirm the existence of a strong entrepreneurship culture among Indonesian households. Investigating survival rates also shows that those businesses are quite stable, even in the face of a violent crisis such as the 1997 one, and as a result, can provide a safety net. Finally, considering household assets - the returns of business to the household, rather than profit or productivity - the returns of business to itself, shows that households running a business are better off. While we demonstrate that uman and social capital are key to business existence, survival and performance, those results open avenues for further research regarding the factors that could hamper growth of those businesses in terms of output and employment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae. The existing plate shape achieved an anatomical fit on 13% of tibiae from the dataset. Modified plate 1 achieved an anatomical fit for 42% and modified plate 2 a fit for 67% of the bones. If either modified plate 1 or plate 2 is used, then the anatomical fit can be increased to 82% for the same dataset. Issues pertaining to any further improvement in plate fit/shape are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.