57 resultados para Cyclic peptides
Resumo:
Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.
Resumo:
Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.
Resumo:
Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl] benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation. © 2014 the Owner Societies.
Resumo:
Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.
Resumo:
Theory suggests that CCBCC (1) will rearrange to planar cyclo-C4B (19) if the excess energy of 1 is greater than or equal to16.1 kcal mol(-1) [calculations at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-31G(d) level of theory]. Cyclo-C4B lies only 1.1 kcal mol(-1) above CCBCC. The planar nature of symmetrical cyclo-C4B is attributed to multicentered bonding involving boron. If cyclo-C4B (19) has an excess energy of greater than or equal to24.4 kcal mol-1, it may ring open to form CCCCB (3).
Resumo:
We have previously reported that induction of MMP-2 activation by Concanavalin A (ConA) in MDA-MB-231 human breast cancer cells involves both transcriptional and post-transcriptional mechanisms, and that the continuous presence of ConA is required for MMP-2 activation (Yu et al. Cancer Res, 55, 3272-7, 1995). In an effort to identify signal transduction pathways which may either contribute to or modulate this mechanism, we found that three different cAMP-inducing agents, cholera toxin (CT), forskolin (FSK), and 3- isobutyl-1-methylxanthine (IBMX) partially inhibited ConA-induced MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. Combinations of CT or FSK with IBMX exhibited additive effects on reduction of MT1-MMP mRNA expression and MMP-2 activation. Agents which increase cAMP levels appeared to target transcriptional aspects of ConA induction, reducing MT1-MMP mRNA and protein in parallel with the reduced MMP-2 activation. In the absence of ConA, down-regulation of constitutive production of MT1-MMP mRNA and protein was observed, indicating that cAMP acts independently of ConA. These observations may help to elucidate factors regulating MT1-MMP expression, which may be pivotal to the elaboration of invasive machinery on the cell surface.
Resumo:
Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloprotemases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mENA levels. Zyniographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-Wa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloprotemnases (83 kDa and 110 Wa and in an activation of the 72-Wa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation, lmmunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 Wa, 83 Wa, and 110 Wa and a triton-insoluble gelatinase of 225 Wa, These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.
Resumo:
The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.
Resumo:
Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.
Resumo:
BACKGROUND: The use of nonstandardized N-terminal pro-B-type natriuretic peptide (NT-proBNP) assays can contribute to the misdiagnosis of heart failure (HF). Moreover, there is yet to be established a common consensus regarding the circulating forms of NT-proBNP being used in current assays. We aimed to characterize and quantify the various forms of NT-proBNP in the circulation of HF patients. METHODS: Plasma samples were collected from HF patients (n = 20) at rest and stored at -80 degrees C. NT-proBNP was enriched from HF patient plasma by use of immunoprecipitation followed by mass spectrometric analysis. Customized homogeneous sandwich AlphaLISA (R) immunoassays were developed and validated to quantify 6 fragments of NT-proBNP. RESULTS: Mass spectrometry identified the presence of several N- and C-terminally processed forms of circulating NT-proBNP, with physiological proteolysis between Pro2-Leu3, Leu3-Gly4, Pro6-Gly7, and Pro75-Arg76. Consistent with this result, AlphaLISA immunoassays demonstrated that antibodies targeting the extreme N or C termini measured a low apparent concentration of circulating NT-proBNP. The apparent circulating NT-proBNP concentration was increased with antibodies targeting nonglycosylated and nonterminal epitopes (P < 0.05). CONCLUSIONS: In plasma collected from HF patients, immunoreactive NT-proBNP was present as multiple N- and C-terminally truncated fragments of the full length NT-proBNP molecule. Immunodetection of NT-proBNP was significantly improved with the use of antibodies that did not target these terminal regions. These findings support the development of a next generation NT-proBNP assay targeting nonterminal epitopes as well as avoiding the central glycosylated region of this molecule. (c) 2013 American Association for Clinical Chemistry
Resumo:
The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.
Resumo:
The trans-activator of transcription (TAT) peptide is regarded as the “gold standard” for cell-penetrating peptides, capable of traversing a mammalian membrane passively into the cytosolic space. This characteristic has been exploited through conjugation of TAT for applications such as drug delivery. However, the process by which TAT achieves membrane penetration remains ambiguous and unresolved. Mechanistic details of TAT peptide action are revealed herein by using three complementary methods: quartz crystal microbalance with dissipation (QCM-D), scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). When combined, these three scales of measurement define that the membrane uptake of the TAT peptide is by trans-membrane insertion using a “worm-hole” pore that leads to ion permeability across the membrane layer. AFM data provided nanometre-scale visualisation of TAT punctuation using a mammalian-mimetic membrane bilayer. The TAT peptide does not show the same specificity towards a bacterial mimetic membrane and QCM-D and SECM showed that the TAT peptide demonstrates a disruptive action towards these membranes. This investigation supports the energy-independent uptake of the cationic TAT peptide and provides empirical data that clarify the mechanism by which the TAT peptide achieves its membrane activity. The novel use of these three biophysical techniques provides valuable insight into the mechanism for TAT peptide translocation, which is essential for improvements in the cellular delivery of TAT-conjugated cargoes including therapeutic agents required to target specific intracellular locations.
Resumo:
Existing field data for Rangal coals (Late Permian) of the Bowen Basin, Queensland, Australia, are inconsistent with the depositional model generally accepted in the current geological literature to explain coal deposition. Given the apparent unsuitability of the current depositional model to the Bowen Basin coal data, a new depositional model, here named the Cyclic Salinity Model, is proposed and tested in this study.