66 resultados para Conduccion y participacion
Resumo:
A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.
Resumo:
Purpose: Generation Y (Gen Y) is the newest and largest generation entering the workforce. Gen Y may differ from previous generations in work-related characteristics which may have recruitment and retention repercussions. Currently, limited theoretically-based research exists regarding Gen Y’s work expectations and goals in relation to undergraduate students and graduates. Design/methodology/approach: This study conducted a theoretically-based investigation of the work expectations and goals of student- and working-Gen Y individuals based within a framework incorporating both expectancy-value and goal setting theories. N = 398 provided useable data via an on-line survey. Findings: Overall, some support was found for predictions with career goals loading on a separate component to daily work expectations and significant differences between student- and working- Gen Y on career goals. No significant differences were found, however, between the two groups in daily work expectations. Research limitations/implications: Future research may benefit from adopting a theoretical framework which assesses both daily work expectations and career goals when examining the factors which motivate Gen Y’s decisions to join and remain at a particular organisation. Practical implications: At a practical level, based on the findings, some examples are provided of the means by which organisations may draw upon daily work expectations and career goals of importance to Gen Y and, in doing so, influence the likelihood that a Gen Y individual will join and remain at their particular organisation. Originality/value: This research has demonstrated the utility of adopting a sound theoretical framework in furthering understanding about the motivations which influence organisations’ ability to recruit and retain Gen Y, among both student Gen Y as well as those Gen Y individuals who are already working.
Resumo:
The microstructure of YBa2Cu3O7-delta (Y-123) materials partially-melted in air and quenched from the temperature range 900-1100 degrees C, has been characterized using a combination of X-ray diffractometry, optical microscopy, scanning electron microscopy, electron microprobe analyses, transmission electron microscopy and energy and wave dispersive X-ray spectrometries. The microstructural studies reveal significant changes in the character of the quenched partial-melt as a function of temperature and time before quenching. BaCu2O2 and BaCuO2 are found to co-exist in stoichiometric samples quenched from the temperature range 920-960 degrees C. Under suitable cooling conditions, large pockets of melt cristallize as BaCuO2 with an exsolution of BaCu2O2 in the form of thin plates (approximate to 50-100 nm thick) along facets. Y2BaCuO5 (Y-211) additions are associated with the formation of BaCu2O2 at 1100 degrees C. Preliminary results on the effects of PtO2 and CeO2 additions to Y-123 (and Y-123 with Y-211 additions) show that these enhace the formation of BaCu2O2 at the melting temperature of 1100 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The majority of current first year university students belong to Generation Y. Consequently, research suggests that, in order to more effectively engage them, their particular learning preferences should be acknowledged in the organisation of their learning environments and in the support provided. These preferences are reflected in the Torts Student Peer Mentor Program, which, as part of the undergraduate law degree at the Queensland University of Technology, utilises active learning, structured sessions and teamwork to supplement student understanding of the substantive law of Torts with the development of life-long skills. This article outlines the Program, and its relevance to the learning styles and experiences of Generation Y first year law students transitioning to university, in order to investigate student perceptions of its effectiveness – both generally and, more specifically, in terms of the Program’s capacity to assist students to develop academic and work-related skills.
Resumo:
La varianza estadística del costo total de un proyecto usualmente se estima por medio de la simulación de Monte Carlo, bajo el supuesto de que los acercamientos analíticos son demasiado complicados. Este artículo analiza este supuesto y muestra que, contrario a lo esperado, la solución analítica es relativamente directa. También se muestra que el coeficiente de variación no se ve afectado por el tamaño (área superficial) del proyecto cuando se usan los costos de los componentes estandarizados. Se provee un caso de estudio en el cual se analizan los costos reales de los componentes para obtener la varianza del costo total requerida. Los resultados confirman trabajos previos al mostrar que la aproximación del segundo momento (varianza) bajo el supuesto de independencia subestima considerablemente el valor exacto. El análisis continua examinando los efectos del juicio profesional y con los datos simulados utilizados, la aproximación resulta razonablemente exacta - el juicio profesional absorbe la mayor parte de las intercorrelaciones involucradas. También se da un ejemplo en el cual las cantidades de los componentes unitarios son valoradas por sus costos unitarios promedios y muestra, una vez más, que la aproximación es cercana al valor real. Finalmente, el trabajo se extiende mostrando cómo obtener, para cada proyecto, las varianzas exactas del costo total.
Resumo:
In this report, a detailed FTIR fitting analysis was used to recognize Mg, Zn and Al homogeneous distribution in MgxZnyAl(x+y)/2-Layered double hydroxide (LDH) hydroxyl layer. In detail, OH-Mg2Al:OH-Mg3 ratios decreased from 95.2:4.8 (MIR) and 94.2:5.8 (NIR) to 58.9:41.1 (MIR) and 61.8:38.2 (NIR), when Mg:Al increased from 2.2:1.0 to 4.1:1.0 in MgAl-LDHs. These fitting results were similar with theoretical calculations of 94.3:5.7 and 59.0:41.0. In a further analysis of MgxZnyAl(x+y)/2-LDHs, OH bonded Zn2Mg, Zn2Al, MgZnAl, Mg2Al and Mg2Zn peaks were identified at 3420, 3430, 3445–3450, 3454 and 3545 cm-1, respectively. With the decrease of Mg:Zn from 3:1 to 1:3, metal-hydroxyl bands changed from OH-Mg2Al and MgZnAl (with a ratio of 49.4:50.6) to OH-MgZnAl and Zn2Al (with a ratio of 55.0:45.0). They were also similar with theoretical calculations of 47.6:52.4 and 54.6:45.4. As a result, these results show that there is an ordered cation distribution in MgxZnyAl(x+y)/2-LDH, and FTIR is feasible in recognizing this structure.
Resumo:
High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.
Resumo:
The early stages of growth of high quality YBa2Cu 3O7-δ (YBCO) films grown on (001) Y-ZrO2 (YSZ) substrates by pulsed laser deposition have been studied using a combination of atomic force microscopy and transmission electron microscopy. A one unit cell thick YBCO layer and relatively large CuO particles formed in the initial stages. Additional YBCO grew on top of the first layer in the form of one or a few unit cell high c-axis oriented islands about 30 nm in diameter. The rounded islands subsequently coalesced into faceted domains. Elongated Y 2BaCuO5 particles nucleated after the first layer of YBCO. A highly textured BaZrO3 layer formed between the YSZ and the YBCO with a cube-on-cube dominant orientation relationship with respect to the YBCO film.
Resumo:
The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.
Resumo:
Our micro structural characterisation of Y-Ba-Cu-O quenched partial melts shows that the BaCuO2 (BC1) phase is crystalline at temperatures as high as 1100°C, and that the partial melt self-establishes a micro structural gradient from the surface towards the interior of the samples, which can be associated with a gradient in an equivalent partial pressure of O2 (pO2). The extension of the Y2BaCuO5-YBa2Cu3O7-x (Y211-Y123) tie-line intersects the primary crystallisation field of BC1 first. The actual peritectic reaction that takes place is Y2BaCuO5(s) + BaCuO2(s) + 2BaCu2O2(L) + 1/2O2 → 2YBa2Cu3O6(s). Two schematic representations which allow an analysis of the pO2 dependence are given. The gradient in micro structure self-established by the sample acts as a driving force for texturing. With this new perspective gained about the actual peritectic reaction and mechanisms of melt-texturing of Y123, it is possible to explain most of the aspects about partial melt-texturing. In addition, it seems possible to devise heat treatments that may allow for the production of well-oriented single domains with very large diameters. © 1999 Elsevier Science B.V.
Resumo:
Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.
Resumo:
The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.
Resumo:
Weak links were fabricated by pulsed laser deposition of YBa 2Cu3Ox thin films on Y-ZrO2 bicrystal substrates. They were formed by transferring the bicrystal boundary into the epitaxial film during the film growth. Their properties were determined by the misorientation angle ( theta ) between the two halves of the bicrystal. The transport properties of the weak links were studied as a function of theta and an exponential dependence of the weak link critical current density was observed for angles up to 45 degrees . Clear Josephson effects with good microwave and magnetic field response were observed.
Resumo:
Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.