450 resultados para Complex Disease
Resumo:
Susceptibility to complex traits, by definition, involves aetiological polymorphisms at multiple genetic loci combined with variable contributions by environmental factors. However, the approaches taken to identifying genetic loci implicated in susceptibility to complex traits frequently overlooks the compounding contribution of multiple loci in favour of highlighting a single gene solely responsible for predisposition. It is only in a small minority of cases that this has resulted in clear disease heritability associated with polymorphisms in a single gene. More often, this approach has led to an accumulation of single-gene associations with minor contributions to disease susceptibility. As the genomic era advances and genome-wide screens become higher in resolution and throughput, the need for simultaneous consideration of multiple loci is becoming more important. With special reference to non-Hodgkin’s lymphoma (NHL), this chapter will overview the current progress made in elucidating genetic polymorphisms associated with disease susceptibility. We also present novel data from a high-resolution single nucleotide polymorphism (SNP) microarray screen for susceptibility loci that are involved in NHL. Using an ‘informed approach’, the findings are highlighted within the context of cellular pathways, and provide insight and new ideas for methods of analysis for genome-wide screens for susceptibility.
Resumo:
It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.
Resumo:
Introduction With the ever-increasing global burden of retinal disease, there is an urgent need to vastly improve formulation strategies that enhance posterior eye delivery of therapeutics. Despite intravitreal administration having demonstrated notable superiority over other routes in enhancing retinal drug availability, there still exist various significant physical/biochemical barriers preventing optimal drug delivery into the retina. A further complication lies with an inability to reliably translate laboratory-based retinal models into a clinical setting. Several formulation approaches have recently been evaluated to improve intravitreal therapeutic outcomes, and our aim in this review is to highlight strategies that hold the most promise. Areas covered We discuss the complex barriers faced by the intravitreal route and examine how formulation strategies including implants, nanoparticulate carriers, viral vectors and sonotherapy have been utilized to attain both sustained delivery and enhanced penetration through to the retina. We conclude by highlighting the advances and limitations of current in vitro, ex vivo and in vivo retinal models in use by researchers globally. Expert opinion Various nanoparticle compositions have demonstrated the ability to overcome the retinal barriers successfully; however, their utility is limited to the laboratory setting. Optimization of these formulations and the development of more robust experimental retinal models are necessary to translate success in the laboratory into clinically efficacious outcomes.
Resumo:
Background Chronic kidney disease (CKD) is a complex health problem, which requires individuals to invest considerable time and energy in managing their health and adhering to multifaceted treatment regimens. Objectives To review studies delivering self-management interventions to people with CKD (Stages 1–4) and assess whether these interventions improve patient outcomes. Design: Systematic review. Methods Nine electronic databases (MedLine, CINAHL, EMBASE, ProQuest Health & Medical Complete, ProQuest Nursing & Allied Health, The Cochrane Library, The Joanna Briggs Institute EBP Database, Web of Science and PsycINFO) were searched using relevant terms for papers published between January 2003 and February 2013. Results The search strategy identified 2,051 papers, of which 34 were retrieved in full with only 5 studies involving 274 patients meeting the inclusion criteria. Three studies were randomised controlled trials, a variety of methods were used to measure outcomes, and four studies included a nurse on the self-management intervention team. There was little consistency in the delivery, intensity, duration and format of the self-management programmes. There is some evidence that knowledge- and health-related quality of life improved. Generally, small effects were observed for levels of adherence and progression of CKD according to physiologic measures. Conclusion The effectiveness of self-management programmes in CKD (Stages 1–4) cannot be conclusively ascertained, and further research is required. It is desirable that individuals with CKD are supported to effectively self-manage day-to-day aspects of their health.
Resumo:
Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
BACKGROUND/OBJECTIVES Research on prisoners is limited and demonstrates a group with disproportionate numbers from disadvantaged backgrounds, known to have a high burden of disease, much of which is diet related. The aim of this study was to gauge the presence of markers of chronic disease, as a basis for food and nutrition policy in prisons. METHODS/SUBJECTS A cross-sectional study design was used with a convenience sample of prisoners in a male 945 bed high secure facility. Face to face interviews with physical measures of height, weight, body fat, waist circumference and blood pressure were collected along with fasting bloods. Data was confirmed with facility records, observations and staff interviews. Full ethics approval was obtained. Results were compared with studies of Australian prisoners and the general population. RESULTS The mean age was 35.5 years (n=120). Prevalence rates were: obesity 14%, diabetes 5%, hypertension 26.7% and smoking 55.8%. Self-report of daily physical activity was 84%, with 51% participating ≥two times daily. Standard food provision was consistent with dietary recommendations, except sodium was high. Where fasting bloods were obtained (n=78) dyslipidaemia was 56.4% with the Metabolic Syndrome present in 26%. CONCLUSIONS Prevalence of diabetes and heart disease risk appear similar to the general population, however obesity was lower and smoking higher. The data provides evidence that markers of chronic disease are present, with this the first study to describe the Metabolic Syndrome in prisoners. Food and nutrition policy in this setting is complex and should address the duty of care issues that exist.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
Objectives: The aim of the current study was to determine the contribution of interleukin (IL) 1 gene cluster polymorphisms previously implicated in susceptibility for ankylosing spondylitis (AS) to AS susceptibility in different populations worldwide. Methods: Nine polymorphisms in the IL1 gene cluster members IL1A (rs2856836, rs17561 and rs1894399), IL1B (rs16944), IL1F10 (rs3811058) and IL1RN (rs419598, the IL1RA VNTR, rs315952 and rs315951) were genotyped in 2675 AS cases and 2592 healthy controls recruited in 12 different centres in 10 countries. Association of variants with AS was tested by Mantel-Haenszel random effects analysis. Results: Strong association was observed with three single nucleotide polymorphisms (SNPs) in the IL1A gene (rs2856836, rs17561, rs1894399, p = 0.0036, 0.000019 and 0.0003, respectively). There was no evidence of significant heterogeneity of effects between centres, and no evidence of non-combinability of findings. The population attributable risk fraction of these variants in Caucasians is estimated at 4-6%. Conclusions: This study confirms that IL1A is associated with susceptibility to AS. Association of the other IL1 gene complex members could not be excluded in specific populations. Prospective meta-analysis is a useful tool in confirmation studies of genes associated with complex genetic disorders such as AS, providing sufficiently large sample sizes to produce robust findings often not achieved in smaller individual cohorts.
Resumo:
Objective. To assess the role of genes and the environment in determining the severity of ankylosing spondylitis. Methods: One hundred seventy-three families with >1 case of ankylosing spondylitis were recruited (120 affected sibling pairs, 26 affected parent-child pairs, 20 families with both first- and second-degree relatives affected, and 7 families with only second-degree relatives affected), comprising a total of 384 affected individuals. Disease severity was assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and functional impairment was determined using the Bath Ankylosing Spondylitis Functional Index (BASFI). Disease duration and age at onset were also studied. Variance-components modeling was used to determine the genetic and environmental components Contributing to familiality of the traits examined, and complex segregation analysis was performed to assess different disease models. Results. Both the disease activity and functional capacity as assessed by the BASDAI and the BASFI, respectively, were found to be highly familial (BASDAI familiality 0.51 [P = 10-4], BASFI familiality 0,68 [P = 3 × 10-7]). No significant shared environmental component was demonstrated to be associated with either the BASDAI or the BASFI. Including age at disease onset and duration of disease as covariates made no difference in the heritability assessments. A strong correlation was noted between the BASDAI and the BASFI (genetic correlation 0.9), suggesting the presence of shared determinants of these 2 measures. However, there was significant residual heritability for each measure independent of the other (BASFI residual heritability 0.48, BASDAI 0,36), perhaps indicating that not all genes influencing disease activity influence chronicity. No significant heritability of age at disease onset was found (heritability 0.18; P = 0.2). Segregation studies suggested the presence of a single major gene influencing the BASDAI and the BASFI. Conclusion. This study demonstrates a major genetic contribution to disease severity in ankylosing spondylitis. As with susceptibility to ankylosing spondylitis, shared environmental factors play little role in determining the disease severity.
Resumo:
Objective. We have previously identified a single-nucleotide polymorphism (SNP) haplotype involving the lymphotoxin α (LTA) and tumor necrosis factor (TNF) loci (termed haplotype LTA-TNF2) on chromosome 6 that shows differential association with rheumatoid arthritis (RA) on HLA-DRB1*0404 and *0401 haplotypes, suggesting the presence of additional non-HLA-DRB1 RA susceptibility genes on these haplotypes. To refine this association, we performed a case-control association study using both SNPs and microsatellite markers in haplotypes matched either for HLA-DRB1*0404 or for HLA-DRB1*0401. Methods. Fourteen SNPs lying between HLA-DRB1 and LTA were genotyped in 87 DRB1*04-positive families. High-density microsatellite typing was performed using 24 markers spanning 2,500 kb centered around the TNF gene in 305 DRB1*0401 or *0404 cases and 400 DRB1*0401 or *0404 controls. Single-marker, 2-marker, and 3-marker minihaplotypes were constructed and their frequencies compared between the DRB1*0401 and DRB1*0404 matched case and control haplotypes. Results. Marked preservation of major histocompatibility complex haplotypes was seen, with chromosomes carrying LTA-TNF2 and either DRB1*0401 or DRB1*0404 both carrying an identical SNP haplotype across the 1-Mb region between TNF and HLA-DRB1. Using microsatellite markers, we observed two 3-marker minihaplotypes that were significantly overrepresented in the DRB1*0404 case haplotypes (P = 0.00024 and P = 0.00097). Conclusion. The presence of a single extended SNP haplotype between LTA-TNF2 and both DRB1*0401 and DRB1*0404 is evidence against this region harboring the genetic effects in linkage disequillbrium with LTA-TNF2. Two RA-associated haplotypes on the background of DRB1*0404 were identified in a 126-kb region surrounding and centromeric to the TNF locus.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
Allergic diseases are the most common chronic disease of the western world, costing $7.8 billion per year in lost productivity and medical care in Australia alone.1 IgE is central to the immunopathogenesis of allergic diseases and important advances are now being made on multiple fronts of IgE research. In particular, two groups independently invested in the generation of IgE reporter mice to address the vexing question of the route of development of the elusive IgE+ B cell.2, 3 Two new anti-IgE mAb targeting membrane IgE and cell-bound IgE have the potential to deplete the cellular source of IgE.4, 5 These could be candidates for alternative anti-IgE treatment options with advantages over current anti-IgE therapy (OmalizumAb), which depletes free serum IgE. Researchers are still intrigued by the modes of interaction of IgE with allergen, and with both its receptors; the high affinity FcεR1 on mast cells and basophils, and the low affinity, C-type lectin, IgE receptor, CD23,6 on B cells and monocytes (Figure 1a and b). A new approach to the study of the complexity of these interactions was recently reported by Reginald et al.7 on page 167 of this issue.
Resumo:
The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.
Resumo:
There have been recent improvements in the clinical understanding and definition of the major types of autoimmune liver disease. However, still lacking is knowledge of their prevalence and pathogenesis. Three areas of study are in progress in our laboratory. First, in type 1 autoimmune hepatitis, the search continues to identify a liver/disease-specific autoantigenic reactant. Using hepatocyte membrane preparations, immunoblotting has underlined the problem of distinguishing, among multiple reactants, those that may be causally rather than consequentially related to hepatocellular damage. Second, in primary biliary cirrhosis (PBC), the need for population screening to ascertain prevalence and detect preclinical cases can be met by a rapid automated procedure for detection, by specific enzyme inhibition in microtitre wells, of antibody (anti-M2) to the pyruvate dehydrogenase complex E2 subunit (PDC-E2). Third, the structure of the conformational epitope within the inner lipoyl domain of PDC-E2 is being investigated by screening random phage-displayed peptide libraries using PBC sera. This has yielded phage clones in which the sequence of the peptide insert portrays the structure of this epitope, as judged by clustering of PBC-derived sequences to particular branches of a guide-tree that shows relatedness of peptides, and by reactivity of selected phage clones with anti-PDC-E2. Thus phage display identifies a peptide 'mimotope' of the antibody epitope in the inner lipoyl domain of PDC-E2.