294 resultados para COMMON VARIANTS
Resumo:
Genome-wide association studies (GWAS) are a powerful hypothesis-free tool for the dissection of susceptibility to common heritable human diseases, including osteoporosis. To date, more than 2000 loci for common human diseases have been identified by GWAS. Success using the GWAS model depends on genetic risk being determined by shared stretches of DNA carried with different frequencies in cases and controls, inherited from ancient ancestors, termed the “common disease–common variant” hypothesis. Not all disease risk is caused by common variants, however, and thus GWAS will not detect all variants involved. Successful GWAS performance requires careful quality control, especially as the effect sizes under study are modest, and there are multiple potential sources of error. Conservative interpretation, use of stringent significance thresholds, and replication in independent cohorts are required to ensure results are robust. Despite these challenging parameters, much has been learnt from GWAS and, as the approach matures and is modified to identify a wider range of variants, significantly more will be learnt about the etiopathogenesis of common diseases such as osteoporosis.
Resumo:
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered. © Published by Oxford University Press 2012.
Resumo:
We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P < 10 4). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P < 10 10) and found evidence for an additional independent association in 4q22/SNCA.A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease. © The Author 2010. Published by Oxford University Press.
Resumo:
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N 71,225 European ancestry, N 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10 24), CYP1A2 (P = 1 × 10 23), FGF5 (P = 1 × 10 21), SH2B3 (P = 3 × 10 18), MTHFR (P = 2 × 10 13), c10orf107 (P = 1 × 10 9), ZNF652 (P = 5 × 10 9) and PLCD3 (P = 1 × 10 8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Resumo:
Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 x 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 x 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 x 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.
Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs
Resumo:
Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 x 10(-)(7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 x 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
Resumo:
Several aspects of sleep behavior such as timing, duration and quality have been demonstrated to be heritable. To identify common variants that influence sleep traits in the population, we conducted a genome-wide association study of six sleep phenotypes assessed by questionnaire in a sample of 2,323 individuals from the Australian Twin Registry. Genotyping was performed on the Illumina 317, 370, and 610K arrays and the SNPs in common between platforms were used to impute non-genotyped SNPs. We tested for association with more than 2,000,000 common polymorphisms across the genome. While no SNPs reached the genome-wide significance threshold, we identified a number of associations in plausible candidate genes. Most notably, a group of SNPs in the third intron of the CACNA1C gene ranked as most significant in the analysis of sleep latency (P = 1.3 x 10(-)(6)). We attempted to replicate this association in an independent sample from the Chronogen Consortium (n = 2,034), but found no evidence of association (P = 0.73). We have identified several other suggestive associations that await replication in an independent sample. We did not replicate the results from previous genome-wide analyses of self-reported sleep phenotypes after correction for multiple testing.
Resumo:
Major depressive disorder (MDD) is a common complex disorder with a partly genetic etiology. We conducted a genome-wide association study of the MDD2000+ sample (2431 cases, 3673 screened controls and >1 M imputed single-nucleotide polymorphisms (SNPs)). No SNPs achieved genome-wide significance either in the MDD2000+ study, or in meta-analysis with two other studies totaling 5763 cases and 6901 controls. These results imply that common variants of intermediate or large effect do not have main effects in the genetic architecture of MDD. Suggestive but notable results were: (a) gene-based tests suggesting roles for adenylate cyclase 3 (ADCY3, 2p23.3) and galanin (GAL, 11q13.3); published functional evidence relates both of these to MDD and serotonergic signaling; (b) support for the bipolar disorder risk variant SNP rs1006737 in CACNA1C (P=0.020, odds ratio=1.10), and; (c) lack of support for rs2251219, a SNP identified in a meta-analysis of affective disorder studies (P=0.51). We estimate that sample sizes 1.8- to 2.4-fold greater are needed for association studies of MDD compared with those for schizophrenia to detect variants that explain the same proportion of total variance in liability. Larger study cohorts characterized for genetic and environmental risk factors accumulated prospectively are likely to be needed to dissect more fully the etiology of MDD.
Resumo:
Most information in linkage analysis for quantitative traits comes from pairs of relatives that are phenotypically most discordant or concordant. Confounding this, within-family outliers from non-genetic causes may create false positives and negatives. We investigated the influence of within-family outliers empirically, using one of the largest genome-wide linkage scans for height. The subjects were drawn from Australian twin cohorts consisting of 8447 individuals in 2861 families, providing a total of 5815 possible pairs of siblings in sibships. A variance component linkage analysis was performed, either including or excluding the within-family outliers. Using the entire dataset, the largest LOD scores were on chromosome 15q (LOD 2.3) and 11q (1.5). Excluding within-family outliers increased the LOD score for most regions, but the LOD score on chromosome 15 decreased from 2.3 to 1.2, suggesting that the outliers may create false negatives and false positives, although rare alleles of large effect may also be an explanation. Several regions suggestive of linkage to height were found after removing the outliers, including 1q23.1 (2.0), 3q22.1 (1.9) and 5q32 (2.3). We conclude that the investigation of the effect of within-family outliers, which is usually neglected, should be a standard quality control measure in linkage analysis for complex traits and may reduce the noise for the search of common variants of modest effect size as well as help identify rare variants of large effect and clinical significance. We suggest that the effect of within-family outliers deserves further investigation via theoretical and simulation studies.
Resumo:
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Resumo:
BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR). RESULTS: We observed no significant association between genetic variants and prostate cancer survival. CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study. IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.
Resumo:
With the identification of common single locus point mutations as risk factors for thrombophilia, many DNA testing methodologies have been described for detecting these variations. Traditionally, functional or immunological testing methods have been used to investigate quantitative anticoagulant deficiencies. However, with the emergence of the genetic variations, factor V Leiden, prothrombin 20210 and, to a lesser extent, the methylene tetrahydrofolate reductase (MTHFR677) and factor V HR2 haplotype, traditional testing methodologies have proved to be less useful and instead DNA technology is more commonly employed in diagnostics. This review considers many of the DNA techniques that have proved to be useful in the detection of common genetic variants that predispose to thrombophilia. Techniques involving gel analysis are used to detect the presence or absence of restriction sites, electrophoretic mobility shifts, as in single strand conformation polymorphism or denaturing gradient gel electrophoresis, and product formation in allele-specific amplification. Such techniques may be sensitive, but are unwielding and often need to be validated objectively. In order to overcome some of the limitations of gel analysis, especially when dealing with larger sample numbers, many alternative detection formats, such as closed tube systems, microplates and microarrays (minisequencing, real-time polymerase chain reaction, and oligonucleotide ligation assays) have been developed. In addition, many of the emerging technologies take advantage of colourimetric or fluorescence detection (including energy transfer) that allows qualitative and quantitative interpretation of results. With the large variety of DNA technologies available, the choice of methodology will depend on several factors including cost and the need for speed, simplicity and robustness. © 2000 Lippincott Williams & Wilkins.
Resumo:
Background & Aims: Peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor, highly expressed in colonic epithelial cells, adipose tissue and macrophages, with an important role in the regulation of inflammatory pathways. The common PPARγ variants C161T and Pro12Ala have recently been associated with Ulcerative Colitis (UC) and an extensive UC phenotype respectively, in a Chinese population. PPARγ Pro12Ala variant homozygotes appear to be protected from the development of Crohn's disease (CD) in European Caucasians. Methods: A case-control study was performed for both variants (CD n=575, UC n=306, Controls n=360) using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis in an Australian IBD cohort. A transmission disequilibrium test was also performed using CD trios for the PPARγ C161T variant. Genotype-phenotype analyses were also undertaken. Results: There was no significant difference in genotype distribution data or allele frequency between CD and UC patients and controls. There was no difference in allele transmission for the C161T variant. No significant relationship between the variants and disease location was observed. Conclusions: We were unable to replicate in a Caucasian cohort the recent association between PPARγ C161T and UC or between PPARγ Pro12Ala and an extensive UC phenotype in a Chinese population. There are significant ethnic differences in genetic susceptibility to IBD and its phenotypic expression.
Resumo:
The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.