63 resultados para CIRCULAR-DICHROISM CURVES
Resumo:
Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.
Resumo:
This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
A study on the vulnerability of biaxially loaded reinforced concrete (RC) circular columns in multi-story buildings under low- to medium-velocity impacts at shear-critical locations is presented. The study is based on a previously validated nonlinear explicit dynamic finite element (FE) modeling technique developed by the authors. The impact is simulated using force pulses generated from full-scale vehicle impact tests abundantly found in the literature with a view to quantifying the sensitivity of the design parameters of the RC columns under the typical impacts that are representative of the general vehicle population. The design parameters considered include the diameter and height of the column, the vertical steel ratio, the concrete grade, and the confinement effects. From the results of the simulations, empirical equations to quantify the critical impulses for the simplified design of the short, circular RC columns under the risk of shear-critical impacts are developed.
Resumo:
Purpose Many contact lens (CL) manufacturers produce simultaneous-image lenses in which power varies either smoothly or discontinuously with zonal radius. We present in vitro measurements of some recent CLs and discuss how power profiles might be approximated in terms of nominal distance corrections, near additions, and on-eye visual performance. Methods Fully hydrated soft, simultaneous-image CLs from four manufacturers (Air Optix AQUA, Alcon; PureVision multifocal, Bausch & Lomb; Acuvue OASYS for Presbyopia, Vistakon; Biofinity multifocal- ‘‘D’’ design, Cooper Vision) were measured with a Phase focus Lens Profiler (Phase Focus Ltd., Sheffield,UK) in a wet cell and powerswere corrected to powers in air. All lenses had zero labeled power for distance. Results Sagittal power profiles revealed that the ‘‘low’’ add PureVision and Air Optix lenses exhibit smooth (parabolic) profiles, corresponding to negative spherical aberration. The ‘‘mid’’ and ‘‘high’’ add PureVision and Air Optix lenses have biaspheric designs, leading to different rates of power change for the central and peripheral portions. All OASYS lenses display a series of concentric zones, separated by abrupt discontinuities; individual profiles can be constrained between two parabolically decreasing curves, each giving a valid description of the power changes over alternate annular zones. Biofinity lenses have constant power over the central circular region of radius 1.5 mm, followed by an annular zone where the power increases approximately linearly, the gradient increasing with the add power, and finally an outer zone showing a slow, linear increase in power with a gradient being almost independent of the add power. Conclusions The variation in power across the simultaneous-image lenses produces enhanced depth of focus. The throughfocusnature of the image, which influences the ‘‘best focus’’ (distance correction) and the reading addition, will vary with several factors, including lens centration, the wearer’s pupil diameter, and ocular aberrations, particularly spherical aberration; visual performance with some designs may show greater sensitivity to these factors.
Resumo:
Tubular members have become progressively more popular due to excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, a large number of such structures are found structurally deficient due to reduction of strength when they expose to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural members are in high demands. In recent times Carbon Fibre Reinforced Polymers (CFRP) composites appears to be an excellent solution to enhance the load carrying capacity and serviceability of steel structures because of its superior physical and mechanical properties. However, the durability of such strengthening system under cold environmental condition has not yet been well documented to guide the engineers. This paper presents the findings of a study conducted to enhance the bond durability of CFRP strengthened steel tubular members by treating steel surface using epoxy based adhesion promoter under cold weather subjected to bending. The experimental program consisted of six number of CFRP strengthened specimens and one bare specimen. The sand blasted surface of the three specimens to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature and cold weather (3oC) for three and six months period of time. The beams were then loaded to failure under four point bending. The structural response of each specimen was predicted in terms of failure mode, failure load and mid-span deflection. The research findings show that the cold weather immersion had an adverse effect on durability of CFRP strengthened structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in elastic range.
Resumo:
In this workshop proposal I discuss a case study physical computing environment named Talk2Me. This work was exhibited in February 2006 at The Block, Brisbane as an interactive installation in the early stages of its development. The major artefact in this work is a 10 metre wide X 3 metre high light-permeable white dome. There are other technologies and artefacts contained within the dome that make up this interactive environment. The dome artefact has impacted heavily on the design process, including shaping the types of interactions involved, the kinds of technologies employed, and the choice of other artefacts. In this workshop paper, I chart some of the various iterations Talk2Me has undergone in the design process.
Resumo:
In this paper we examine the combined azimuthal and axial shear of a compressible isotropic elastic circular cylindrical tube of finite extent, otherwise referred to as helical shear (which is an isochoric deformation). The equilibrium equations are formulated in terms of the principal stretches, and explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation are obtained and compared with those obtained previously for this problem. Several classes of strain-energy functions are derived and in some general cases complete solutions of the equilibrium equations are obtained. Existing results are recovered as special cases and some new results for the strain-energy functions derived are determined and discussed.
Resumo:
In this paper we examine the combined extension and torsion of a compressible isotropic elastic cylinder of finite extent. The equilibrium equations are formulated in terms of the principal stretches and then applied to the special case of pure torsion superimposed on a uniform extension (an isochoric deformation). Explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation with vanishing traction on the lateral surfaces of the cylinder are obtained. Some strain-energy functions satisfying these conditions are considered, existing results are recovered as special cases and new results are obtained. We also point out how the strain-energy functions generated from the considered isochoric deformation considered (of a compressible material) can be used to generate energy functions and corresponding solutions for the incompressible theory.
Resumo:
Here we report on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible chemical vapor deposition of ultralong carbon microcoils using acetylene precursor in the temperature range 700-750 °C. Scanning electron microscopy analysis reveals that the carbon microcoils have a unique double-helix structure and a uniform circular cross-section. It is shown that double-helix carbon microcoils have outstanding superelastic properties. The microcoils can be extended up to 10-20 times of their original coil length, and quickly recover the original state after releasing the force. A mechanical model of the carbon coils with a large spring index is developed to describe their extension and contraction. Given the initial coil parameters, this mechanical model can successfully account for the geometric nonlinearity of the spring constants for carbon micro- and nanocoils, and is found in a good agreement with the experimental data in the whole stretching process.
Resumo:
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.