223 resultados para Câmera anterior
Resumo:
With the ever-increasing emphasis on ocular disease recognition in the practice of optometry and especially anterior eye disease management and therapeutics, any book addressing such issues is bound to have a captive audience. This second edition of Anterior Eye Disease and Therapeutics A–Z provides a succinct yet comprehensive coverage of this topic.
Resumo:
Scoliosis is a deformity of the spine which affects children and adolescents, and remains a challenge to treat. This study measured the forces used during surgery to correct scoliosis and studied changes to spinal mechanics from the implantation of metal rods used to hold the spine straight. The results of this study will help surgeons and engineers understand how to straighten the spine more efficiently to provide patients with better outcomes.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
A 60-year-old male experienced a marked unilateral myopic shift of 20 D following attempted removal of intravitreal heavy silicone oil (HSO) used in the treatment of inferior proliferative vitreous retinopathy following retinal detachment. Examination revealed HSO adherent to the corneal endothelium forming a convex interface with the aqueous, obscuring the entire pupil, which required surgical intervention to restore visual acuity. This case highlights the potential ocular complications associated with silicone oil migration into the anterior chamber, which include corneal endothelial decompensation and a significant increase in myopia.
Resumo:
Background Foot dorsiflexion plays an essential role in both controlling balance and human gait. Electromyography (EMG) and sonomyography (SMG) can provide information on several aspects of muscle function. The aim was to establish the relationship between the EMG and SMG variables during isotonic contractions of foot dorsiflexors. Methods Twenty-seven healthy young adults performed the foot dorsiflexion test on a device designed ad hoc. EMG variables were maximum peak and area under the curve. Muscular architecture variables were muscle thickness and pennation angle. Descriptive statistical analysis, inferential analysis and a multivariate linear regression model were carried out. The confidence level was established with a statistically significant p-value of less than 0.05. Results The correlation between EMG variables and SMG variables was r = 0.462 (p < 0.05). The linear regression model to the dependent variable “peak normalized tibialis anterior (TA)” from the independent variables “pennation angle and thickness”, was significant (p = 0.002) with an explained variance of R2 = 0.693 and SEE = 0.16. Conclusions There is a significant relationship and degree of contribution between EMG and SMG variables during isotonic contractions of the TA muscle. Our results suggest that EMG and SMG can be feasible tools for monitoring and assessment of foot dorsiflexors. TA muscle parameterization and assessment is relevant in order to know that increased strength accelerates the recovery of lower limb injuries.
Resumo:
Dorsiflexion (DF) of the foot plays an essential role in both controlling balance and human gait. Electromyography and Sonomyography can provide information on several aspects of muscle function. The aim was to describe a new method for real-time monitoring of muscular activity, as measured using EMG, muscular architecture, as measured using SMG, force, as measured using dynamometry, and kinematic parameters, as measured using IS during isometric and isotonic contractions of the foot DF. The present methodology may be clinically relevant because it involves a reproducible procedure which allows the function and structure of the foot DF to be monitored.
Resumo:
Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL).
Resumo:
Study Design Retrospective review of prospectively collected data. Objectives To analyze intervertebral (IV) fusion after thoracoscopic anterior spinal fusion (TASF) and explore the relationship between fusion scores and key clinical variables. Summary of Background Information TASF provides comparable correction with some advantages over posterior approaches but reported mechanical complications, and their relationship to non-union and graft material is unclear. Similarly, the optimal combination of graft type and implant stiffness for effecting successful radiologic union remains undetermined. Methods A subset of patients from a large single-center series who had TASF for progressive scoliosis underwent low-dose computed tomographic scans 2 years after surgery. The IV fusion mass in the disc space was assessed using the 4-point Sucato scale, where 1 indicates <50% and 4 indicates 100% bony fusion of the disc space. The effects of rod diameter, rod material, graft type, fusion level, and mechanical complications on fusion scores were assessed. Results Forty-three patients with right thoracic major curves (mean age 14.9 years) participated in the study. Mean fusion scores for patient subgroups ranged from 1.0 (IV levels with rod fractures) to 2.2 (4.5-mm rod with allograft), with scores tending to decrease with increasing rod size and stiffness. Graft type (autograft vs. allograft) did not affect fusion scores. Fusion scores were highest in the middle levels of the rod construct (mean 2.52), dropping off by 20% to 30% toward the upper and lower extremities of the rod. IV levels where a rod fractured had lower overall mean fusion scores compared to levels without a fracture. Mean total Scoliosis Research Society (SRS) questionnaire scores were 98.9 from a possible total of 120, indicating a good level of patient satisfaction. Conclusions Results suggest that 100% radiologic fusion of the entire disc space is not necessary for successful clinical outcomes following thoracoscopic anterior selective thoracic fusion.
Resumo:
Study design Anterior and posterior vertebral body heights were measured from sequential MRI scans of adolescent idiopathic scoliosis (AIS) patients and healthy controls. Objective To measure changes in vertebral body height over time during scoliosis progression to assess how vertebral body height discrepancies change during growth. Summary of background data Relative anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. This theory proposes that the anterior column grows faster, and the posterior column slower, in AIS patients when compared to healthy controls. There is disagreement in the literature as to whether the anterior vertebral body heights are proportionally greater than posterior vertebral body heights in AIS patients when compared to healthy controls. To some extent, these discrepancies may be attributed to methodological differences. Methods MRI scans of the major curve of 21 AIS patients (mean age 12.5 ± 1.4 years, mean Cobb 32.2 ± 12.8º) and between T4 and T12 of 21 healthy adolescents (mean age 12.1 ± 0.5 years) were captured for this study. Of the 21 AIS patients, 14 had a second scan on average 10.8 ± 4.7 months after the first. Anterior and posterior vertebral body heights were measured from the true sagittal plane of each vertebra such that anterior overgrowth could be quantified. Results The difference between anterior and posterior vertebral body height in healthy, non-scoliotic children was significantly greater than in AIS patients with mild to moderate scoliosis. However there was no significant relationship between the overall anterior-posterior vertebral body height difference in AIS and either severity of the curve or its progression over time. Conclusions Whilst AIS patients have a proportionally longer anterior column than non-scoliotic controls, the degree of anterior overgrowth was not related to the rate of progression or the severity of the scoliotic curve.
Resumo:
Purpose To examine whether anterior scleral and conjunctival thickness undergoes significant diurnal variation over a 24-hour period. Methods Nineteen healthy young adults (mean age 22 ± 2 years) with minimal refractive error (mean spherical equivalent refraction -0.08 ± 0.39 D), had measures of anterior scleral and conjunctival thickness collected using anterior segment optical coherence tomography (AS-OCT) at seven measurement sessions over a 24-hour period. The thickness of the temporal anterior sclera and conjunctiva were determined at 6 locations (each separated by 0.5 mm) at varying distances from the scleral spur for each subject at each measurement session. Results Both the anterior sclera and conjunctiva were found to undergo significant diurnal variations in thickness over a 24-hour period (both p <0.01). The sclera and conjunctiva exhibited a similar pattern of diurnal change, with a small magnitude thinning observed close to midday, and a larger magnitude thickening observed in the early morning immediately after waking. The amplitude of diurnal thickness change was larger in the conjunctiva (mean amplitude 69 ± 29 μm) compared to the sclera (21 ± 8 μm). The conjunctiva exhibited its smallest magnitude of change at the scleral spur location (mean amplitude 56 ± 17 μm) whereas the sclera exhibited its largest magnitude of change at this location (52 ± 21 μm). Conclusions This study provides the first evidence of diurnal variations occurring in the thickness of the anterior sclera and conjunctiva. Studies requiring precise measures of these anatomical layers should therefore take time of day into consideration. The majority of the observed changes occurred in the early morning immediately after waking and were of larger magnitude in the conjunctiva compared to the sclera. Thickness changes at other times of the day were of smaller magnitude and generally not statistically significant.
Resumo:
• The biomechanical properties of the sclera are documented to be altered in eyes with myopia, with the myopic sclera thought to be more susceptible to deformation from otherwise normal ocular forces. • The close anatomical and functional relationship between the ciliary body and sclera suggests that ciliary muscle contraction during accommodation may influence the overlying sclera. • This study aimed to characterise the changes occurring in anterior scleral thickness with accommodation using anterior segment optical coherence tomography (AS-OCT) in young adult myopes and emmetropes.
Resumo:
Acute anterior uveitis (AAU) involves inflammation of the iris and ciliary body of the eye. It occurs both in isolation and as a complication of ankylosing spondylitis (AS). It is strongly associated with HLA-B*27, but previous studies have suggested that further genetic factors may confer additional risk. We sought to investigate this using the Illumina Exomechip microarray, to compare 1504 cases with AS and AAU, 1805 with AS but no AAU and 21 133 healthy controls. We also used a heterogeneity test to test the differences in effect size between AS with AAU and AS without AAU. In the analysis comparing AS+AAU+ cases versus controls, HLA-B*27 and HLA-A*02:01 were significantly associated with the presence of AAU (P<10−300 and P=6 × 10−8, respectively). Secondary independent association with PSORS1C3 (P=4.7 × 10−5) and TAP2 (P=1.1 × 10−5) were observed in the major histocompatibility complex. There was a new suggestive association with a low-frequency variant at zinc-finger protein 154 in the AS without AAU versus control analysis (zinc-finger protein 154 (ZNF154), P=2.2 × 10−6). Heterogeneity testing showed that rs30187 in ERAP1 has a larger effect on AAU compared with that in AS alone. These findings also suggest that variants in ERAP1 have a differential impact on the risk of AAU when compared with AS, and hence the genetic risk for AAU differs from AS.
Resumo:
Introduction. This is a pilot study of quantitative electro-encephalographic (QEEG) comodulation analysis, which is used to assist in identifying regional brain differences in those people suffering from chronic fatigue syndrome (CFS) compared to a normative database. The QEEG comodulation analysis examines spatial-temporal cross-correlation of spectral estimates in the resting dominant frequency band. A pattern shown by Sterman and Kaiser (2001) and referred to as the anterior posterior dissociation (APD) discloses a significant reduction in shared functional modulation between frontal and centro-parietal areas of the cortex. This research attempts to examine whether this pattern is evident in CFS. Method. Eleven adult participants, diagnosed by a physician as having CFS, were involved in QEEG data collection. Nineteen-channel cap recordings were made in five conditions: eyes-closed baseline, eyes-open, reading task one, math computations task two, and a second eyes-closed baseline. Results. Four of the 11 participants showed an anterior posterior dissociation pattern for the eyes-closed resting dominant frequency. However, seven of the 11 participants did not show this pattern. Examination of the mean 8-12 Hz amplitudes across three cortical regions (frontal, central and parietal) indicated a trend of higher overall alpha levels in the parietal region in CFS patients who showed the APD pattern compared to those who did not have this pattern. All patients showing the pattern were free of medication, while 71% of those absent of the pattern were using antidepressant medications. Conclusions. Although the sample is small, it is suggested that this method of evaluating the disorder holds promise. The fact that this pattern was not consistently represented in the CFS sample could be explained by the possibility of subtypes of CFS, or perhaps co-morbid conditions. Further, the use of antidepressant medications may mask the pattern by altering the temporal characteristics of the EEG. The results of this pilot study indicate that further research is warranted to verify that the pattern holds across the wider population of CFS sufferers.
Resumo:
Surgical treatment of scoliosis is quantitatively assessed in the clinic using radiographic measures of deformity correction, as well as the rib hump, but it is important to understand the extent to which these quantitative measures correlate with self-reported improvements in patients’ quality of life following surgery. The purpose of this prospective study was to evaluate the relationship between clinical outcomes of thoracoscopic anterior scoliosis surgery and deformity correction using the Scoliosis Research Society questionnaire (SRS-24). Patients undergoing thoracoscopic anterior scoliosis correction report good SRS scores which are comparable to those reported in previous studies for both open and thoracoscopic scoliosis correction procedures. Major Cobb correction is a significant predictor of patient satisfaction when comparing subgroups of patients with the highest and lowest major curve corrections.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.