77 resultados para Brine discharge
Resumo:
Introduction Malnutrition is common among hospitalised patients, with poor follow-up of nutrition support post-discharge. Published studies on the efficacy of ambulatory nutrition support (ANS) for malnourished patients post-discharge are scarce. The aims of this study were to evaluate the rate of dietetics follow-up of malnourished patients post-discharge, before (2008) and after (2010) implementation of a new ANS service, and to evaluate nutritional outcomes post-implementation. Materials and Methods Consecutive samples of 261 (2008) and 163 (2010) adult inpatients referred to dietetics and assessed as malnourished using Subjective Global Assessment (SGA) were enrolled. All subjects received inpatient nutrition intervention and dietetic outpatient clinic follow-up appointments. For the 2010 cohort, ANS was initiated to provide telephone follow-up and home visits for patients who failed to attend the outpatient clinic. Subjective Global Assessment, body weight, quality of life (EQ-5D VAS) and handgrip strength were measured at baseline and five months post-discharge. Paired t-test was used to compare pre- and post-intervention results. Results In 2008, only 15% of patients returned for follow-up with a dietitian within four months post-discharge. After implementation of ANS in 2010, the follow-up rate was 100%. Mean weight improved from 44.0 ± 8.5kg to 46.3 ± 9.6kg, EQ-5D VAS from 61.2 ± 19.8 to 71.6 ± 17.4 and handgrip strength from 15.1 ± 7.1 kg force to 17.5 ± 8.5 kg force; p<0.001 for all. Seventy-four percent of patients improved in SGA score. Conclusion Ambulatory nutrition support resulted in significant improvements in follow-up rate, nutritional status and quality of life of malnourished patients post-discharge.
Resumo:
Introduction Economic evaluations of interventions in the hospital setting often rely on the estimated long-term impact on patient survival. Estimates of mortality rates and long-term outcomes among patients discharged alive from the intensive care unit (ICU) are lacking from lower- and middle-income countries. This study aimed to assess the long-term survival and life expectancy (LE) amongst post-ICU patients in Thailand, a middle-income country. Methods In this retrospective cohort study, data from a regional tertiary hospital in northeast Thailand and the regional death registry were linked and used to assess patient survival time after ICU discharge. Adult ICU patients aged at least 15 years who had been discharged alive from an ICU between 1 January 2004 and 31 December 2005 were included in the study, and the death registry was used to determine deaths occurring in this cohort up to 31st December 2010. These data were used in conjunction with standard mortality life tables to estimate annual mortality and life expectancy. Results This analysis included 10,321 ICU patients. During ICU admission, 3,251 patients (31.5%) died. Of 7,070 patients discharged alive, 2,527 (35.7%) were known to have died within the five-year follow-up period, a mortality rate 2.5 times higher than that in the Thai general population (age and sex matched). The mean LE was estimated as 18.3 years compared with 25.2 years in the general population. Conclusions Post-ICU patients experienced much higher rates of mortality than members of the general population over the five-year follow-up period, particularly in the first year after discharge. Further work assessing Health Related Quality of Life (HRQOL) in both post-ICU patients and in the general population in developing countries is needed.
Resumo:
The effect of extended cycling on lithium metal electrodes has been investigated in an ionic liquid electrolyte. Cycling studies were conducted on lithium metal electrodes in a symmetrical Li|electrolyte|Li coin cell configuration for 5000 charge–discharge cycles at a current density of 0.1 mA cm− 2. The voltage–time plots show evidence of some unstable behavior which is attributed to surface reorganization. No evidence for lithium dendrite induced short circuiting was observed. SEM imaging showed morphology changes had occurred but no evidence of needle-like dendrite based growth was found after 5000 charge–discharge cycles. This study suggests that ionic liquid electrolytes can enable next generation battery technologies such as rechargeable lithium-air, in which a safe, reversible lithium electrode is a crucial component.
Resumo:
Introduction Malnutrition is common among hospitalised patients, with poor follow-up of nutrition support post-discharge. Published studies on the efficacy of ambulatory nutrition support (ANS) for malnourished patients post-discharge are scarce. The aims of this study were to evaluate the rate of dietetics follow-up of malnourished patients post-discharge, before (2008) and after (2010) implementation of a new ANS service, and to evaluate nutritional outcomes post-implementation. Materials and Methods Consecutive samples of 261 (2008) and 163 (2010) adult inpatients referred to dietetics and assessed as malnourished using Subjective Global Assessment (SGA) were enrolled. All subjects received inpatient nutrition intervention and dietetic outpatient clinic follow-up appointments. For the 2010 cohort, ANS was initiated to provide telephone follow-up and home visits for patients who failed to attend the outpatient clinic. Subjective Global Assessment, body weight, quality of life (EQ-5D VAS) and handgrip strength were measured at baseline and five months post-discharge. Paired t-test was used to compare pre- and post-intervention results. Results In 2008, only 15% of patients returned for follow-up with a dietitian within four months post-discharge. After implementation of ANS in 2010, the follow-up rate was 100%. Mean weight improved from 44.0 ± 8.5kg to 46.3 ± 9.6kg, EQ-5D VAS from 61.2 ± 19.8 to 71.6 ± 17.4 and handgrip strength from 15.1 ± 7.1 kg force to 17.5 ± 8.5 kg force; p<0.001 for all. Seventy-four percent of patients improved in SGA score. Conclusion Ambulatory nutrition support resulted in significant improvements in follow-up rate, nutritional status and quality of life of malnourished patients post-discharge.
Resumo:
This research investigated the effectiveness of using an eco-driving strategy at urban signalised intersections from both the individual driver and the traffic flow perspective. The project included a field driving experiment and a series of traffic simulation investigations. The study found that the prevailing eco-driving strategy has negative impacts on traffic mobility and environmental performance when the traffic is highly congested. An improved eco-driving strategy has been developed to mitigate these negative impacts.
Resumo:
This study aimed to determine if systematic variation of the diagnostic terminology embedded within written discharge information (i.e., concussion or mild traumatic brain injury, mTBI) would produce different expected symptoms and illness perceptions. We hypothesized that compared to concussion advice, mTBI advice would be associated with worse outcomes. Sixty-two volunteers with no history of brain injury or neurological disease were randomly allocated to one of two conditions in which they read a mTBI vignette followed by information that varied only by use of the embedded terms concussion (n = 28) or mTBI (n = 34). Both groups reported illness perceptions (timeline and consequences subscale of the Illness Perception Questionnaire-Revised) and expected Postconcussion Syndrome (PCS) symptoms 6 months post injury (Neurobehavioral Symptom Inventory, NSI). Statistically significant group differences due to terminology were found on selected NSI scores (i.e., total, cognitive and sensory symptom cluster scores (concussion > mTBI)), but there was no effect of terminology on illness perception. When embedded in discharge advice, diagnostic terminology affects some but not all expected outcomes. Given that such expectations are a known contributor to poor mTBI outcome, clinicians should consider the potential impact of varied terminology on their patients.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
This project assessed the potential impact of untreated sewage release in a near-shore marine environment of Antarctica through the distribution and characterisation of the faecal indicator bacteria Enterococcus. Antibiotic resistance and genome sequencing analyses revealed that enterococci resistant to multiple antibiotics closely related to clinical pathogens were introduced to the pristine Antarctic environment by Australia's Davis station.
Resumo:
Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralise the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from different ion filtration processes to compare their relative capacities to neutralise bauxite residues. An assessment of the chemical stability of the neutralisation products, neutralisation efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralisation for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralisation capacity and efficiencies have been observed. The neutralisation efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. These studies have revealed that multiple neutralisation steps occur throughout the process. Environmental, economic and social advantages and disadvantages of the different filtration technologies have been explored to determine the most sustainable method for the neutralisation of bauxite residues. The relative degree of “green” associated with nanofiltered seawater and reverse osmosis filtered seawater are discussed.
Resumo:
Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.
Resumo:
Arc discharge ablation with a catalyst-filled carbon anode in a helium background was used for the synthesis of graphene and carbon nanotubes. In this paper, we present the results of the numerical simulation of the distribution of various plasma parameters in discharge, as well as the distribution of carbon flux on the nanotube surface, for the typical discharge with an arc current of 60 A and a background gas pressure of 68 kPa.
Resumo:
The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.