94 resultados para Algorithmic skeleton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty, and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exists where the more mind changes the learner is willing to accept, the lesser the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live coding performances provide a context with particular demands and limitations for music making. In this paper we discuss how as the live coding duo aa-cell we have responded to these challenges, and what this experience has revealed about the computational representation of music and approaches to interactive computer music performance. In particular we have identified several effective and efficient processes that underpin our practice including probability, linearity, periodicity, set theory, and recursion and describe how these are applied and combined to build sophisticated musical structures. In addition, we outline aspects of our performance practice that respond to the improvisational, collaborative and communicative requirements of musical live coding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone is a complex, living, constantly changing tissue. Bone consists of cancellous and cortical bone. This architecture allows the skeleton to perform its essential mechanical functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The support vector machine (SVM) has played an important role in bringing certain themes to the fore in computationally oriented statistics. However, it is important to place the SVM in context as but one member of a class of closely related algorithms for nonlinear classification. As we discuss, several of the “open problems” identified by the authors have in fact been the subject of a significant literature, a literature that may have been missed because it has been aimed not only at the SVM but at a broader family of algorithms. Keeping the broader class of algorithms in mind also helps to make clear that the SVM involves certain specific algorithmic choices, some of which have favorable consequences and others of which have unfavorable consequences—both in theory and in practice. The broader context helps to clarify the ties of the SVM to the surrounding statistical literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From one view of composition—let us call it the inspired or “Mozartian” view—musical compositions arrive fully formed in the mind of the composer and simply require transcription. In reality, however, it seems that very few people are so inspired, and composition is often more akin to a gradual clarification and refinement of partially formed ideas on the musical landscape. Particular landmarks in the compositional landscape tend to become clear before others, such that the incomplete piece is a patchwork of disconnected musical islands. An interactive evolutionary morphing system may provide some assistance for composers, to help build bridges between musical islands by generating hybrid musical transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of constructing randomized online algorithms for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious adversary. Restricting our attention to the class of “work-based” algorithms, we provide a framework for designing algorithms that uses the technique of regularization. For the case when δ is a uniform metric, we exhibit two algorithms that arise from this framework, and we prove a bound on the competitive ratio of each. We show that the second of these algorithms is ln n + O(loglogn) competitive, which is the current state-of-the art for the uniform MTS problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Language-use has proven to be the most complex and complicating of all Internet features, yet people and institutions invest enormously in language and crosslanguage features because they are fundamental to the success of the Internet’s past, present and future. The thesis takes into focus the developments of the latter – features that facilitate and signify linking between or across languages – both in their historical and current contexts. In the theoretical analysis, the conceptual platform of inter-language linking is developed to both accommodate efforts towards a new social complexity model for the co-evolution of languages and language content, as well as to create an open analytical space for language and cross-language related features of the Internet and beyond. The practiced uses of inter-language linking have changed over the last decades. Before and during the first years of the WWW, mechanisms of inter-language linking were at best important elements used to create new institutional or content arrangements, but on a large scale they were just insignificant. This has changed with the emergence of the WWW and its development into a web in which content in different languages co-evolve. The thesis traces the inter-language linking mechanisms that facilitated these dynamic changes by analysing what these linking mechanisms are, how their historical as well as current contexts can be understood and what kinds of cultural-economic innovation they enable and impede. The study discusses this alongside four empirical cases of bilingual or multilingual media use, ranging from television and web services for languages of smaller populations, to large-scale, multiple languages involving web ventures by the British Broadcasting Corporation, the Special Broadcasting Service Australia, Wikipedia and Google. To sum up, the thesis introduces the concepts of ‘inter-language linking’ and the ‘lateral web’ to model the social complexity and co-evolution of languages online. The resulting model reconsiders existing social complexity models in that it is the first that can explain the emergence of large-scale, networked co-evolution of languages and language content facilitated by the Internet and the WWW. Finally, the thesis argues that the Internet enables an open space for language and crosslanguage related features and investigates how far this process is facilitated by (1) amateurs and (2) human-algorithmic interaction cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.