36 resultados para Aerial photography in oceanography.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience gained from numerous projects conducted by the U.S. Environmental Protection Agency's (EPA) Environmental Monitoring Systems Laboratory in Las Vegas, Nevada has provided insight to functional issues of mapping, monitoring, and modeling of wetland habitats. Three case studies in poster form describe these issues pertinent to managing wetland resources as mandated under Federal laws. A multiphase project was initiated by the EPA Alaska operations office to provide detailed wetland mapping of arctic plant communities in an area under petroleum development pressure. Existing classification systems did not meet EPA needs. Therefore a Habitat Classification System (HCS) derived from aerial photography was compiled. In conjunction with this photointerpretive keys were developed. These products enable EPA personnel to map large inaccessible areas of the arctic coastal plain and evaluate the sensitivity of various wetland habitats relative to petroleum development needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-touch interfaces across a wide range of hardware platforms are becoming pervasive. This is due to the adoption of smart phones and tablets in both the consumer and corporate market place. This paper proposes a human-machine interface to interact with unmanned aerial systems based on the philosophy of multi-touch hardware-independent high-level interaction with multiple systems simultaneously. Our approach incorporates emerging development methods for multi-touch interfaces on mobile platforms. A framework is defined for supporting multiple protocols. An open source solution is presented that demonstrates: architecture supporting different communications hardware; an extensible approach for supporting multiple protocols; and the ability to monitor and interact with multiple UAVs from multiple clients simultaneously. Validation tests were conducted to assess the performance, scalability and impact on packet latency under different client configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and fabrication of a proto-type four-rotor vertical take-off and landing (VTOL) aerial robot for use as indoor experimental robotics platform is presented. The flyer is termed an X4-flyer. A development of the dynamic model of the system is presented and a pilot augmentation control design is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.