305 resultados para Acoustic Emissions, Condition Monitoring, Diesel Knock, Combustion Faults
Resumo:
This research is aimed at addressing problems in the field of asset management relating to risk analysis and decision making based on data from a Supervisory Control and Data Acquisition (SCADA) system. It is apparent that determining risk likelihood in risk analysis is difficult, especially when historical information is unreliable. This relates to a problem in SCADA data analysis because of nested data. A further problem is in providing beneficial information from a SCADA system to a managerial level information system (e.g. Enterprise Resource Planning/ERP). A Hierarchical Model is developed to address the problems. The model is composed of three different Analyses: Hierarchical Analysis, Failure Mode and Effect Analysis, and Interdependence Analysis. The significant contributions from the model include: (a) a new risk analysis model, namely an Interdependence Risk Analysis Model which does not rely on the existence of historical information because it utilises Interdependence Relationships to determine the risk likelihood, (b) improvement of the SCADA data analysis problem by addressing the nested data problem through the Hierarchical Analysis, and (c) presentation of a framework to provide beneficial information from SCADA systems to ERP systems. The case study of a Water Treatment Plant is utilised for model validation.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Condition monitoring on rails and train wheels is vitally important to the railway asset management and the rail-wheel interactions provide the crucial information of the health state of both rails and wheels. Continuous and remote monitoring is always a preference for operators. With a new generation of strain sensing devices in Fibre Bragg Grating (FBG) sensors, this study explores the possibility of continuous monitoring of the health state of the rails; and investigates the required signal processing techniques and their limitations.
Resumo:
The demand for high quality rail services in the twenty-first century has put an ever increasing demand on all rail operators. In order to meet the expectation of their patrons, the maintenance regime of railway systems has to be tightened up, the track conditions have to be well looked after, the rolling stock must be designed to withstand heavy duty. In short, in an ideal world where resources are unlimited, one needs to implement a very rigorous inspection regime in order to take care of the modem needs of a railway system [1]. If cost were not an issue, the maintenance engineers could inspect the train body by the most up-to-date techniques such as ultra-sound examination, x-ray inspection, magnetic particle inspection, etc. on a regular basis. However it is inconceivable to have such a perfect maintenance regime in any commercial railway. Likewise, it is impossible to have a perfect rolling stock which can weather all the heavy duties experienced in a modem railway. Hence it is essential that some condition monitoring schemes are devised to pick up potential defects which could manifest into safety hazards. This paper introduces an innovative condition monitoring system for track profile and, together with an instrumented car to carry out surveillance of the track, will provide a comprehensive railway condition monitoring system which is free from the usual difficulty of electromagnetic compatibility issues in a typical railway environment
Resumo:
Analysing the condition of an asset is a big challenge as there can be many aspects which can contribute to the overall functional reliability of the asset that have to be considered. In this paper we propose a two-step functional and causal relationship diagram (FCRD) to address this problem. In the first step, the FCRD is designed to facilitate the analysis of the condition of an asset by evaluating the interdependence (functional and causal) relationships between different components of the asset with the help of a relationship diagram. This is followed by the advanced FCRD (AFCRD) which refines the information from the FCRD into a comprehensive and manageable format. This new two-step methodology for asset condition monitoring is tested and validated for the case of a water treatment plant. © IMechE 2012.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
Vacuum circuit breaker (VCB) overvoltage failure and its catastrophic failures during shunt reactor switching have been analyzed through computer simulations for multiple reignitions with a statistical VCB model found in the literature. However, a systematic review (SR) that is related to the multiple reignitions with a statistical VCB model does not yet exist. Therefore, this paper aims to analyze and explore the multiple reignitions with a statistical VCB model. It examines the salient points, research gaps and limitations of the multiple reignition phenomenon to assist with future investigations following the SR search. Based on the SR results, seven issues and two approaches to enhance the current statistical VCB model are identified. These results will be useful as an input to improve the computer modeling accuracy as well as the development of a reignition switch model with point-on-wave controlled switching for condition monitoring
Resumo:
Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.