52 resultados para 1-HEXYL-4-ETHYLOCTYL ISOPROPYLPHOSPHONIC ACID
Resumo:
In the structure of the title salt C7H10NO+ C8H3Cl2O4- the benzene planes of the cation and anion are essentially parallel [inter-ring dihedral angle 4.8(2)deg]. In the anion the carboxylic acid and carboxylate groups make dihedral angles of 19.0(2) and 79.5(2)\%, respectively, with the benzene ring. Aminium N-H...O, carboxylic acid O-H...O and weak aromatic C-H...O hydrogen-bonding associations with carboxyl O-atom acceptors together with cation-anion pi-pi ring interactions [minimum ring centroid separation = 3.734(3)Ang] give a two-dimensional sheet structure which lies parallel to (001).
Resumo:
In the structure of the title magnesium complex with the phenoxy herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), [Mg(H2O)5(C8H5Cl2O3)]+ C8H5Cl2O3)- . 0.5H2O, the discrete cationic MgO6 complex units comprise a carboxyl O-donor from a monodentate 2,4-D cationic ligand and five water molecules in a slightly distorted octahedral coordination. The 2,4-D anions are linked to the complex units through duplex water O-H...O(carboxyl) hydrogen bonds through the coordinated water molecules. In the crystal inter-unit O-H...O hydrogen-bonding interactions involving coordinated water molecules as well as the hemi-hydrate solvate molecule with carboxyl O-atom acceptors, give a two-dimensional layered structure lying parallel (001), in which pi-pi ligand-cation interactions [minimum ring centroid separation, 3.6405(17)A] and a short O-H...Cl interaction [3.345(2)A] are also found.
Resumo:
The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.
Resumo:
Purpose: Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.
Resumo:
Chromatographic fingerprints of 46 Eucommia Bark samples were obtained by liquid chromatography-diode array detector (LC-DAD). These samples were collected from eight provinces in China, with different geographical locations, and climates. Seven common LC peaks that could be used for fingerprinting this common popular traditional Chinese medicine were found, and six were identified as substituted resinols (4 compounds), geniposidic acid and chlorogenic acid by LC-MS. Principal components analysis (PCA) indicated that samples from the Sichuan, Hubei, Shanxi and Anhui—the SHSA provinces, clustered together. The other objects from the four provinces, Guizhou, Jiangxi, Gansu and Henan, were discriminated and widely scattered on the biplot in four province clusters. The SHSA provinces are geographically close together while the others are spread out. Thus, such results suggested that the composition of the Eucommia Bark samples was dependent on their geographic location and environment. In general, the basis for discrimination on the PCA biplot from the original 46 objects× 7 variables data matrix was the same as that for the SHSA subset (36 × 7 matrix). The seven marker compound loading vectors grouped into three sets: (1) three closely correlating substituted resinol compounds and chlorogenic acid; (2) the fourth resinol compound identified by the OCH3 substituent in the R4 position, and an unknown compound; and (3) the geniposidic acid, which was independent of the set 1 variables, and which negatively correlated with the set 2 ones above. These observations from the PCA biplot were supported by hierarchical cluster analysis, and indicated that Eucommia Bark preparations may be successfully compared with the use of the HPLC responses from the seven marker compounds and chemometric methods such as PCA and the complementary hierarchical cluster analysis (HCA).
Resumo:
Current-voltage (I-V) curves of Poly(3-hexyl-thiophene) (P3HT) diodes have been collected to investigate the polymer hole-dominated charge transport. At room temperature and at low electric fields the I-V characteristic is purely Ohmic whereas at medium-high electric fields, experimental data shows that the hole transport is Trap Dominated - Space Charge Limited Current (TD-SCLC). In this regime, it is possible to extract the I-V characteristic of the P3HT/Al junction showing the ideal Schottky diode behaviour over five orders of magnitude. At high-applied electric fields, holes’ transport is found to be in the trap free SCLC regime. We have measured and modelled in this regime the holes’ mobility to evaluate its dependence from the electric field applied and the temperature of the device.
Resumo:
In the structure of the title compound, [C8H11LiO4(H2O)2]n the distorted tetrahadral LiO4 coordination sphere comprises two water molecules and two carboxyl O-donors from separate bridging cis-2-carboxycyclohexane-1-carboxylate monoanions [Li-O range, 1.887(4)-1.946(3)A], giving chain substructures which extend along (010). Water-water and water-carboxyl O-H...O hydrogen bonds stabilize these chain structures and provide inter-chain links, resulting in a two-dimensional layered structure extending across (011).
Resumo:
The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.
Resumo:
BACKGROUND: The excitatory neurotransmitter glutamate has been implicated in both the hyperexcitability required for cortical spreading depression as well as activation of the trigeminovascular system required for the allodynia associated with migraine. Polymorphisms in the glutamate receptor ionotropic amino-3-hydroxy-5-methyl-4-isoxazole-propionin acid 1 (GRIA1) and GRIA3 genes that code for 2 of 4 subunits of the glutamate receptor have been previously associated with migraine in an Italian population. In addition, the GRIA3 gene is coded within a previously identified migraine susceptibility locus at Xq24. This study investigated the previously associated polymorphisms in both genes in an Australian case-control population. METHODS: Variants in GRIA1 and GRIA3 were genotyped in 472 unrelated migraine cases and matched controls, and data were analyzed for association. RESULTS: Analysis showed no association between migraine and the GRIA1 gene. However, association was observed with the GRIA3 single nucleotide polymorphism (SNP) rs3761555 (P = .008). CONCLUSION: The results of this study confirmed the previous report of association at the rs3761555 SNP within the migraine with aura subgroup of migraineurs. However, the study identified association with the inverse allele suggesting that rs3761555 may not be the causative SNP but is more likely in linkage disequilibrium with another causal variant in both populations. This study supports the plethora of evidence suggesting that glutamate dysfunction may contribute to migraine susceptibility, warranting further investigation of the glutamatergic system and particularly of the GRIA3 gene.
Resumo:
Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.
Resumo:
INTRODUCTION In retrospective analyses of patients with nonsquamous non-small-cell lung cancer treated with pemetrexed, low thymidylate synthase (TS) expression is associated with better clinical outcomes. This phase II study explored this association prospectively at the protein and mRNA-expression level. METHODS Treatment-naive patients with nonsquamous non-small-cell lung cancer (stage IIIB/IV) had four cycles of first-line chemotherapy with pemetrexed/cisplatin. Nonprogressing patients continued on pemetrexed maintenance until progression or maximum tolerability. TS expression (nucleus/cytoplasm/total) was assessed in diagnostic tissue samples by immunohistochemistry (IHC; H-scores), and quantitative reverse-transcriptase polymerase chain reaction. Cox regression was used to assess the association between H-scores and progression-free/overall survival (PFS/OS) distribution estimated by the Kaplan-Meier method. Maximal χ analysis identified optimal cutpoints between low TS- and high TS-expression groups, yielding maximal associations with PFS/OS. RESULTS The study enrolled 70 patients; of these 43 (61.4%) started maintenance treatment. In 60 patients with valid H-scores, median (m) PFS was 5.5 (95% confidence interval [CI], 3.9-6.9) months, mOS was 9.6 (95% CI, 7.3-15.7) months. Higher nuclear TS expression was significantly associated with shorter PFS and OS (primary analysis IHC, PFS: p < 0.0001; hazard ratio per 1-unit increase: 1.015; 95%CI, 1.008-1.021). At the optimal cutpoint of nuclear H-score (70), mPFS in the low TS- versus high TS-expression groups was 7.1 (5.7-8.3) versus 2.6 (1.3-4.1) months (p = 0.0015; hazard ratio = 0.28; 95%CI, 0.16-0.52; n = 40/20). Trends were similar for cytoplasm H-scores, quantitative reverse-transcriptase polymerase chain reaction and other clinical endpoints (OS, response, and disease control). CONCLUSIONS The primary endpoint was met; low TS expression was associated with longer PFS. Further randomized studies are needed to explore nuclear TS IHC expression as a potential biomarker of clinical outcomes for pemetrexed treatment in larger patient cohorts. © 2013 by the International Association for the Study of Lung Cancer.
Resumo:
The aim of this study was to use lipidomics to determine if the lipid composition of apolipoprotein-B-containing lipoproteins is modified by dyslipidaemia in type 2 diabetes and if any of the identified changes potentially have biological relevance in the pathophysiology of type 2 diabetes. VLDL and LDL from normolipidaemic and dyslipidaemic type 2 diabetic women and controls were isolated and quantified with HPLC and mass spectrometry. A detailed molecular characterisation of VLDL triacylglycerols (TAG) was also performed using the novel ozone-induced dissociation method, which allowed us to distinguish vaccenic acid (C18:1 n-7) from oleic acid (C18:1 n-9) in specific TAG species. Lipid class composition was very similar in VLDL and LDL from normolipidaemic type 2 diabetic and control participants. By contrast, dyslipidaemia was associated with significant changes in both lipid classes (e.g. increased diacylglycerols) and lipid species (e.g. increased C16:1 and C20:3 in phosphatidylcholine and cholesteryl ester and increased C16:0 [palmitic acid] and vaccenic acid in TAG). Levels of palmitic acid in VLDL and LDL TAG correlated with insulin resistance, and VLDL TAG enriched in palmitic acid promoted increased secretion of proinflammatory mediators from human smooth muscle cells. We showed that dyslipidaemia is associated with major changes in both lipid class and lipid species composition in VLDL and LDL from women with type 2 diabetes. In addition, we identified specific molecular lipid species that both correlate with clinical variables and are proinflammatory. Our study thus shows the potential of advanced lipidomic methods to further understand the pathophysiology of type 2 diabetes.
Resumo:
We have determined the effect of two exercise-training intensities on the phospholipid profile of both glycolytic and oxidative muscle fibers of female Sprague-Dawley rats using electrospray-ionization mass spectrometry. Animals were randomly divided into three training groups: control, which performed no exercise training; low-intensity (8 m/min) treadmill running; or high-intensity (28 m/min) treadmill running. All exercise-trained rats ran 1,000 m/session for 4 days/wk for 4 wk and were killed 48 h after the last training bout. Exercise training was found to produce no novel phospholipid species but was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus lateralis) muscle fibers. The largest observed change was a decrease of ∼20% in the abundance of 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine [PE(18:0/22:6); P < 0.001] ions in both the low- and high-intensity training regimes in glycolytic fibers. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid [PA(18:1/18:2); P < 0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine [plasmenyl PE (16:0/18:2); P < 0.005] ions were also observed for both training regimes in glycolytic fibers. We conclude that exercise training results in a remodeling of phospholipids in rat skeletal muscle. Even though little is known about the physiological or pathophysiological role of specific phospholipid molecular species in skeletal muscle, it is likely that this remodeling will have an impact on a range of cellular functions.
Resumo:
This study examined questions concerning differences in the acyl composition of membrane phospholipids that have been linked to the faster rates of metabolic processes in endotherms versus ectotherms. In liver, kidney, heart and brain of the ectothermic reptile, Trachydosaurus rugosus, and the endothermic mammal, Rattus norvegicus, previous findings of fewer unsaturates but a greater unsaturation index (UI) in membranes of the mammal versus those of the reptile were confirmed. Moreover, the study showed that the distribution of phospholipid head-group classes was similar in the same tissues of the reptile and mammal and that the differences in acyl composition were present in all phospholipid classes analysed, suggesting a role for the physical over the chemical properties of membranes in determining the faster rates of metabolic processes in endotherms. The most common phosphatidylcholine (PC) molecules present in all tissues (except brain) of the reptile were 16:0/18:1, 16:0/18:2, 18:0/18:2, 18:1/18:1 and 18:1/18:2, whereas arachidonic acid (20:4), containing PCs 16:0/ 20: 4, 18: 0/ 20: 4, were the common molecules in the mammal. The most abundant phosphatidylethanolamines ( PE) used in the tissue of the reptile were 18:0/18:2, 18:0/20:4, 18:1/18:1, 18:1/18:2 and 18:1/20:4, compared to 16: 0/ 18: 2, 16: 0/ 20: 4, 16: 0/ 22: 6, 18: 0/ 20: 4, 18: 0/ 22: 6 and 18:1/20: 4 in the mammal. UI differences were primarily due to arachidonic acid found in both PC and PEs, whereas docosahexaenoic acid (22:6) was a lesser contributor mainly within PEs and essentially absent in the kidney. The phospholipid composition of brain was more similar in the reptile and mammal compared to those of other tissues.
Resumo:
Natural resource management planning in the Northern Gulf region of Queensland is concerned with ‘how [natural assets] and community aspirations can be protected and enhanced to provide the Northern Gulf community with the economic, social and environmental means to meet the continuing growth of the region in an ecological and economically sustainable way’ (McDonald & Dawson 2004). In the Etheridge Shire, located in the tropical savanna of the Northern Gulf region, two of the activities that influence the balance between economic growth and long-term sustainable development are: 1. the land-use decisions people in the Shire make with regards to their own enterprises. 2. their decisions to engage in civically-minded activities aimed at improving conditions in the region. Land-use decision and engagement in community development activities were chosen for detailed analysis because they are activities for which policies can be devised to improve economic and sustainable development outcomes. Changing the formal and informal rules that guide and govern these two different kinds of decisions that people can make in the Etheridge Shire – the decision to improve one’s own situation and the decision to improve the situation for others in the community – may expand the set of available options for people in the Shire to achieve their goals and aspirations. Identifying appropriate and effective changes in rules requires, first, an understanding of the ‘action arena’, in this case comprised of a diversity of ‘participants’ from both within and outside the Etheridge Shire, and secondly knowledge of ‘action situations’ (land-use decisions and engagement in community development activities) in which stakeholders are involved and/or have a stake. These discussions are presented in sections 4.1.1.1 and 4.1.1.2.