470 resultados para screw coating surface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extreme diversity of conditions acting on railways necessitates a variety of experimental approaches to study the critical wear mechanisms that present themselves at the contact interface. This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. It is commonly adapted to line contact interface as it has constant contact pressure. But practical scenario of the rail wheel interface, the contact area increase and contact pressure change as tracks worn off. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analysed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β- FeO(OH) and goethite α- FeO(OH) corrosion scale at the electrode surface.The corrosion rate was lowest at 0 rpm.The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to trace surface evolution in the wheel-rail interface using data obtained from a twin-disc testing machine and the surface replication technique. Changes in the surface profile of the rail testing disc are explicitly analysed according to the wear mechanism, which helps elaborate a better understanding of the attrition of asperities during the wearing-in process of surface modification. The surface profile amplitude was seen to decrease during the initial running-in phase of the experiment cycle, and after reaching a saturation value, the profile amplitude then increased. Ultimately the results show that grinding will roughen the rail surface and the wheel-rail contact conditions will then remove this surface damage to some saturation value of the profile height. The variation in the rail surface profile beyond this point is then only dependant on the contact conditions which exist between the wheel and rail during normal operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uniform growth of copper oxide nanowires on the top of copper plate has been investigated during the exposure to radiofrequency plasma discharge in respect to plasma properties and its localization. The copper samples of 10 mm radius and 1 mm in thickness were exposed to argon-oxygen plasma created at discharge power of 150 W. After 10 min, almost uniform growth of nanowires was achieved over large surface. There were significant distortions in nanowire length and shape near the edges. Based on the experimental results, we developed a theoretical model, which took into account a balance in heat released at the flow of the current to the nanowire and rejected from the nanowire. This model established a dependence of the maximal length of the nanowire at dependence on the plasma parameters, where the limiting factor for nanowire growth and distortions in distribution are ballistic effects of ions and their local fluxes. In contrast, the plasma heating by potential interactions of species has very little influence on the length and smaller deviations in flux are allowed for uniformity of growth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 °C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed convection laminar two-dimensional boundary-layer flow of non-Newtonian pseudo-plastic fluids is investigated from a horizontal circular cylinder with uniform surface heat flux using a modified power-law viscosity model, that contains no unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are introduced into boundary-layer formulations for such fluids. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning fluids in terms of the fluid temperature distributions, rate of heat transfer in terms of the local Nusselt number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through creative practice and written research, this thesis explores the peculiar qualities of surface materials, revealing a broader ethos of practice which I identify as care. I propose that care arises as a mode of being between artist and work, work and beholder, and between the parts of the work. The thesis situates the art practice within an ethical framework, premised on, but extending, Heidegger's ontological equation of care with being. The original contribution is in the claim that the particular qualities of worldly matter generate the terms for care as a particular mode of engagement that is reciprocal and intransitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies of Bi heteroepitaxy on Si(001) have recently uncovered a self-organised nanoline motif which has no detectable width dispersion. The Bi lines can be grown with an aspect ratio that is greater than 350 : 1. This paper describes a study of the nanoline geometry and electronic structure using a combination of scanning tunneling microscopy (STM) and ab initio theoretical methods. In particular, the effect that the lines have on Si(001) surface structure at large length scales, l > 100 nm, is studied. It has been found that Bi line growth on surfaces that have regularly spaced single height steps results in a 'preferred' domain orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is performed at room temperature contain ZnPd islands surrounded by a substrate with dilute Zn substitutions. Annealing these surfaces drives the Zn towards the substrate top-layer, and favours the completion of the first 1 : 1 monolayer before the onset of growth in the next layer.