719 resultados para Teaching Conditions
Resumo:
Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.
Resumo:
Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.
Resumo:
Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.
Resumo:
This chapter focuses on learning and assessment as social and cultural practices situated within national and international policy contexts of educational change. Classroom assessment was researched using a conceptualization of knowing in action, or the ‘generative dance’. Fine-grained analyses of interactivity between students, and between teacher and student/s, and their patterns of participation in assessment and learning were conducted. The findings offer original insights into how learners draw on explicit and tacit forms of knowing in order to successfully participate in learning. Assessment is re-imagined as a dynamic space in which teachers learn about their students as they learn with their students, and where all students can be empowered to find success.
Resumo:
Pedagogical styles, methods, models, practices or strategies are valued for what they claim they can achieve. In recent times curriculum documents and governments have called for a range of teaching approaches to meet the variety of learner differences and allow students to make more independent decision making in physical education (Hardy and Mawer, 1999). One well known system of categorizing teaching styles is the Mosston and Ashworth’s Spectrum of Teaching Styles (2002). In Queensland, prior to 2005, no research had been conducted on the teaching styles used by teachers of Physical Education. However, many teachers self-reported that they employed a variety of teaching styles depending on the aims and content of the material to be taught (Cothran, et al., 2005). This research, for the first time, collected teacher’s self-reported use of teaching styles and through observations verify the styles that were being used to teach Senior Physical Education in Queensland. More specifically the aims of the research were to determine: a) What teaching styles teachers of Senior Physical Education in Queensland believe they use? i) Were they using a range of teaching styles? ii) Were teachers of Senior Physical Education in Queensland using teaching styles that the Queensland Senior Physical Education Syllabus (2004) required? b) If Mosston and Ashworth’s (2002) Spectrum of Teaching Styles were used to categorise styles observed during the teaching of Senior Physical Education did the styles being used provide opportunities for evaluating as described by the Queensland Senior Physical Education Syllabus (2004)? The research was conducted in two phases. Part A involved use of a questionnaire to determine the teaching styles Queensland teachers of Senior Physical Education reported using and how often they reported using them. The questionnaire was administered to 110 teachers throughout Queensland. The sample was determined from 346 schools teaching Senior Physical Education (in 2006) across the state of Queensland, Australia. 286 questionnaires were sent to 77 non-randomised schools. There were 66 male and 44 female respondents in the sample. A wide range of teaching styles were reportedly used by teachers of Senior Physical Education with Practice Style-Style B, Command Style-Style A and Divergent Discovery Style-Style H, the most reportedly used. The Self-Teaching Style-Style K was reportedly used the least by teachers involved in this study. From the respondents a group of teachers were identified to form the participants for Part B. Part B of the study involved observation of a group of volunteer participants (from those who had completed the questionnaire) who displayed many of the ‘typical’ characteristics, and a cross-section of backgrounds, of teachers of Senior Physical Education in Queensland. In the case of this study, the criteria used to select the group of teachers to be observed teaching were, teaching experience (number of years: 0-4, 5-10 and 11 years and over), gender, geographical location of schools (focused on Brisbane and near area for travel/access purposes), profile of the students at schools (girls, boys or co-educational), nature of school (Government or Private) and the physical activities being taught in a school (activities to reflect all the areas of physical activity outlined within the syllabus). A total of 27 questionnaire respondents from Part A indicated that they were willing to be observed teaching practical lessons. The respondents who volunteered to be involved in Part B of the study came from different regions across the state of Queensland and was not confined to the Brisbane metropolitan area or large cities. From the group of people who volunteered for Part B four came from outside Brisbane and 23 from the Brisbane area. The final observation group of nine participants included eight teachers from the Brisbane area and one from a rural area. The characteristics of the final group included three females and six males from private and public schools with a range of teaching experience in years and a range of physical activities. Four year 12 and five year 11 teachers and their classes were videoed on three occasions as they progressed through an eight – nine week unit of work. This resulted in 24 hours 48 minutes and 20 seconds (or 4465 observations) of video teaching data which was subsequently coded by several researchers (99% interobserver reliability) to determine the teaching styles employed by the participants. This research indicated that, based on Mosston and Ashworth’s (2002) Spectrum of Teaching Styles, teachers of Senior Physical Education in Queensland used predominantly one style to teach 27 observed lessons. This is in sharp contrast to the variety of styles 110 teachers self- reportedly used and in spite of the Queensland Senior Physical Education Syllabus (2004) suggesting a range of specific styles be used. These results are discussed in the context of the Queensland Senior Physical Education Syllabus (2004), teacher knowledge of teaching styles and high-stakes curriculum and external pressures such as national testing and the publication of data from schools in tabloid newspapers. The data and findings in this research provide a rationale for improving teacher knowledge regarding teaching styles and the need for a clear definition of terminology in syllabus documents. Careful examination of the effects that the publishing of school data may have on teaching styles is advised. This research not only collected teacher’s perceptions of the teaching styles they believed they used it also verified these claims through direct observations of the teachers while teaching. These findings are relevant to syllabus writers, teacher educators, policy makers within education and teachers.
Resumo:
Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the material freezing points equipped with a continuous monitoring system. The investigation of the drying characteristics has been conducted in the temperature range -10~25oC and the airflow in the range 1.5~2.5 m/s. Some experiments were conducted as a single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air parameters on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitivity of the temperature. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.
Resumo:
This research study examines qualitatively and quantitatively the influence of introducing an activity in the traditional engineering classroom. It studies instances of active learning and its relationship with the student learning outcomes. The primary purpose of this study was to compare the learning outcomes of students who were involved in an active TLA with those students who were not, instead they learned under traditional teaching and studying approaches. I present the argument that the introduction of a TLA in class stimulates student engagement bringing enormous benefits to student learning. The outcomes of this study were measured using qualitative and quantitative data to evaluate the levels of student engagement, achievement and satisfaction in the terms of Intended Learning Outcomes (ILOs). Results indicate that students held positive attitude towards the activities in class and also, that a positive link between TLA, learning approach and learning outcome exist. It also provides insights about the potential benefits of active learning when compared with traditional, passive and teacher-centred methods of teaching & learning.
Resumo:
The term design thinking is increasingly used to mean the human-centred 'open' problem solving process decision makers use to solve real world 'wicked' problems. Claims have been made that design thinking in this sense can radically improve not only product innovation but also decision making in other fields, such as management, public health, and organizations in general. Many design and management schools in North America and elsewhere now include course offerings in design thinking though little is known about how successful these are with students. The lack of such courses in Australia presents an opportunity to design a curriculum for design thinking, employing design thinking's own practices. This paper describes the development of a design thinking course at Swinburne University taught simultaneously in Melbourne and Hong Kong. Following a pilot of the course in Semester 1, 2011 with 90 enrolled students across the two countries, we describe lessons learned to date and future course considerations as it is being taught in its second iteration.
Resumo:
It is well known that a broad range of ocular anatomical and physiological parameters undergo significant diurnal variation. However, the natural diurnal variations that occur in the length of the human eye (axial length) and their underlying causes have been less well studied. Improvements in optical methods for the measurement of ocular biometrics now allow more precise and comprehensive measurements of axial length to be performed than has previously been possible. Research from animal models also suggests a link between diurnal axial length variations and longer term myopic eye growth, and that retinal image defocus can disrupt these diurnal rhythms in axial length. This research programme has examined the diurnal variations in axial length in young normal eyes, the contributing components and the influence of optical stimuli on these changes. In the first experiment, the normal pattern and consistency of the diurnal variations in axial length were examined at 10 different times (5 measurements each day, at ~ 3-hour intervals from ~ 9 am to ~ 9 pm) over 2 consecutive days on 30 young adult subjects (15 myopes, 15 emmetropes). Additionally, variations in a range of other ocular biometric measurements such as choroidal thickness, intraocular pressure, and other ocular biometrics were also explored as potential factors that may be associated with the observed variations in axial length. To investigate the potential influence of refractive error on diurnal axial length variations, the differences in the magnitude and pattern of diurnal variations in axial length between the myopic and emmetropic subjects were examined. Axial length underwent significant diurnal variation that was consistently observed over the 2 consecutive days of measurements, with the longest axial length typically occurring during the day, and the shortest at night. Significant diurnal variations were also observed in choroidal thickness, IOP and other ocular biometrics (such as central corneal thickness, anterior chamber depth and vitreous chamber depth) of the eye. Diurnal variations in vitreous chamber depth, IOP (positive associations) and choroidal thickness (negative association) were all significantly correlated with the diurnal changes in axial length. Choroidal thickness was found to fluctuate approximately in antiphase to the axial length changes, with the average timing of the longest axial length coinciding with the thinnest choroid and vice versa. There were no significant differences in the ocular diurnal variations associated with refractive error. Given that the diurnal changes in axial length could be associated with the changes in the eye’s optical quality, whether the optical quality of the eye also undergoes diurnal variation in the same cohort of young adult myopes and emmetropes over 2 consecutive days was also examined. Significant diurnal variations were observed only in the best sphere refraction (power vector M) and in the spherical aberration of the eye over two consecutive days of testing. The changes in the eyes lower and higher order ocular optics were not significantly associated with the diurnal variations in axial length and the other measured ocular biometric parameters. No significant differences were observed in the magnitude and timing of diurnal variations in lower-order and higher-order optics associated with refractive error. Since the small natural fluctuations in the eye’s optical quality did not appear to be sufficient to influence the natural diurnal fluctuations in ocular biometric parameters, in the next experiment, the influence of monocular myopic defocus (+1.50 DS) upon the normal diurnal variations in axial length and choroidal thickness of young adult emmetropic human subjects (n=13) imposed over a 12 hour period was examined. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular myopic defocus (Day 2, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined. Significant diurnal variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days. The introduction of monocular myopic defocus led to significant reductions in the mean amplitude of diurnal change, and phase shifts in the peak timing of the diurnal rhythms in axial length and choroidal thickness. These defocus induced changes were found to be transient in nature and returned to normal the day following removal of the defocus. To further investigate the influence of optical stimuli on human diurnal rhythms, in the final experiment, the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness was examined in young adult emmetropic subjects (n=15). Similar to the previous experiment, the natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, -2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined over three consecutive days. Both axial length and choroidal thickness underwent significant diurnal variations on each of the three days. The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of diurnal change, but no change in the peak timing of diurnal rhythms in both parameters. The ocular changes associated with hyperopic defocus returned to normal, the day following removal of the defocus. This research has shown that axial length undergoes significant diurnal variation in young adult human eyes, and has shown that the natural diurnal variations in choroidal thickness and IOP are significantly associated, and may underlie these diurnal fluctuations in axial length. This work also demonstrated for the first time that exposing young human eyes to monocular myopic and hyperopic defocus leads to a significant disruption in the normal diurnal rhythms of axial length and choroidal thickness. These changes in axial length with defocus may reflect underlying mechanisms in the human eye that are involved in the regulation of longer term eye growth.
Resumo:
Critical literacy (CL) has been the subject of much debate in the Australian public and education arenas since 2002. Recently, this debate has dissipated as literacy education agendas and attendant policies shift to embrace more hybrid models and approaches to the teaching of senior English. This paper/presentation reports on the views expressed by four teachers of senior English about critical literacy and it’s relevance to students who are from culturally and linguistically diverse backgrounds who are learning English while undertaking senior studies in high school. Teachers’ understandings of critical literacy are important, esp. given the emphasis on Critical and Creative Thinking and Literacy as two of the General Capabilities underpinning the Australian national curriculum. Using critical discourse analysis, data from four specialist ESL teachers in two different schools were analysed for the ways in which these teachers construct critical literacy. While all four teachers indicated significant commitment to critical literacy as an approach to English language teaching, the understandings they articulated varied from providing forms of access to powerful genres, to rationalist approaches to interrogating text, to a type of ‘critical-aesthetic’ analysis of text construction. Implications are also discussed.
Resumo:
Teaching English to EAL/D learners as a cross-curricula priority, not just the purview of the English classroom or language specialist, is now officially endorsed in the national curriculum. Yet many teachers, including subject English teachers, feel ill-equipped for this task. This paper presents an action research project conducted with a teacher of junior secondary English and Geography. The focus of the project was developing metacognitive reading strategies among EAL/D learners to enable them to access content area information more effectively and more independently. We discuss the particular strategies that were beneficial for students at the Emerging level of English and present a range of research-based reading strategies that teachers can embed in regular teaching in order to enhance reading comprehension. Examples from Geography and English lessons will be provided to show how the teaching of explicit ‘second language’ reading strategies can position EAL/D learners as valuable members of the classroom.
Resumo:
Literacy educator Kathy Mills, observes that creating multimodal and digital texts is an essential part of the national English curriculum in Australia. Here, she presents five practical and engaging ways to transform conventional writing tasks in a digital world.
Resumo:
Australian universities now commonly list creativity amongst the generic attributes that graduates are expected to have achieved or demonstrated upon graduation. While this reflects emerging local and global trends to encourage creativity at every educational level, creativity as a generic capability has special difficulties. These include problems of definition, its perceived value, the gap between espoused beliefs and practice, and tensions between standards and accreditation agendas and the desire to embed creative outcomes in the curriculum. Contextual and disciplinary differences also shape the expression of creative teaching and teaching for creativity. This paper explores these issues, acknowledging the role of information and communications technologies in shaping the technology-enhanced learning spaces where creativity may emerge. Csikszentmihalyi’s model of creativity as a system of interactions is presented as a useful foundation for furthering the discourse in this domain, along with the notion of creative ecologies as spaces for effecting change.
Resumo:
Our task is to consider the evolving perspectives around curriculum documented in the Theory Into Practice (TIP) corpus to date. The 50 years in question, 1962–2012, account for approximately half the history of mass institutionalized schooling. Over this time, the upper age of compulsory schooling has crept up, stretching the school curriculum's reach, purpose, and clientele. These years also span remarkable changes in the social fabric, challenging deep senses of the nature and shelf-life of knowledge, whose knowledge counts, what science can and cannot deliver, and the very purpose of education. The school curriculum is a key social site where these challenges have to be addressed in a very practical sense, through a design on the future implemented within the resources and politics of the present. The task's metaphor of ‘evolution’ may invoke a sense of gradual cumulative improvement, but equally connotes mutation, hybridization, extinction, survival of the fittest, and environmental pressures. Viewed in this way, curriculum theory and practice cannot be isolated and studied in laboratory conditions—there is nothing natural, neutral, or self-evident about what knowledge gets selected into the curriculum. Rather, the process of selection unfolds as a series of messy, politically contaminated, lived experiments; thus curriculum studies require field work in dynamic open systems. We subscribe to Raymond Williams' approach to social change, which he argues is not absolute and abrupt, one set of ideas neatly replacing the other. For Williams, newly emergent ideas have to compete against the dominant mindset and residual ideas “still active in the cultural process'” (Williams, 1977, p. 122). This means ongoing debates. For these reasons, we join Schubert (1992) in advocating “continuous reconceptualising of the flow of experience” (p. 238) by both researchers and practitioners.