513 resultados para Staged process flow
Resumo:
Executive coaching is a rapidly expanding approach to leadership development which has grown at a rate that warrants extensive examination of its effects (Wasylyshyn, 2003). This thesis has therefore examined both behavioural and psychological effects based on a nine month executive coaching intervention within a large not-for-profit organisation. The intervention was a part of a larger ongoing integrated organisational strategy to create an organisational coaching culture. In order to examine the effectiveness of the nine month executive coaching intervention two studies were conducted. A quantitative study used a pre and post questionnaire to examine leaders and their team members‘ responses before and after the coaching intervention. The research examined leader-empowering behaviours, psychological empowerment, job satisfaction and affective commitment. Significant results were demonstrated from leaders‘ self-reports on leader-empowering behaviours and their team members‘ self-reports revealed a significant flow on effect of psychological empowerment. The second part of the investigation involved a qualitative study which explored the developmental nature of psychological empowerment through executive coaching. The examination dissected psychological empowerment into its widely accepted four facets of meaning, impact, competency and self-determination and investigated, through semi-structured interviews, leaders‘ perspectives of the effect of executive coaching upon them (Spreitzer, 1992). It was discovered that a number of the common practices within executive coaching, including goal-setting, accountability and action-reflection, contributed to the production of outcomes that developed higher levels of psychological empowerment. Careful attention was also given to organisational context and its influence upon the outcomes.
Resumo:
Analytical expressions are derived for the mean and variance, of estimates of the bispectrum of a real-time series assuming a cosinusoidal model. The effects of spectral leakage, inherent in discrete Fourier transform operation when the modes present in the signal have a nonintegral number of wavelengths in the record, are included in the analysis. A single phase-coupled triad of modes can cause the bispectrum to have a nonzero mean value over the entire region of computation owing to leakage. The variance of bispectral estimates in the presence of leakage has contributions from individual modes and from triads of phase-coupled modes. Time-domain windowing reduces the leakage. The theoretical expressions for the mean and variance of bispectral estimates are derived in terms of a function dependent on an arbitrary symmetric time-domain window applied to the record. the number of data, and the statistics of the phase coupling among triads of modes. The theoretical results are verified by numerical simulations for simple test cases and applied to laboratory data to examine phase coupling in a hypothesis testing framework
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
The unsteady natural convection boundary layer adjacent to an instantaneously heated inclined plate is investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer following instantaneous heating may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. Major scaling relations of the velocity and thicknesses and the flow development time of the natural convection boundary layer are obtained using triple-layer integral solutions and verified by direct numerical simulations over a wide range of flow parameters.
Resumo:
Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.
Resumo:
One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.
Resumo:
Unpacking the Entrepreneurial Process: A Step-by-Step Guide to a Successful Venture in the Entertainment Industry introduces a step-by-step guide to either students, entrepreneurs and intrapreneurs to fully understand the necessary steps to both unleash their entrepreneurial capabilities and to foster the development of new ones.
Resumo:
The study of venture idea characteristics and the contextual fit between venture ideas and individuals are key research goals in entrepreneurship (Davidsson, 2004). However, to date there has been limited scholarly attention given to these phenomena. Accordingly, this study aims to help fill the gap by investigating the importance of novelty and relatedness of venture ideas in entrepreneurial firms. On the premise that new venture creation is a process and that research should be focused on the early stages of the venturing process, this study primarily focuses its attention on examining how venture idea novelty and relatedness affect the performance in the venture creation process. Different types and degrees of novelty are considered here. Relatedness is shown to be based on individuals’ prior knowledge and resource endowment. Performance in the venture creation process is evaluated according to four possible outcomes: making progress, getting operational, being terminated and achieving positive cash flow. A theoretical model is developed demonstrating the relationship between these variables along with the investment of time and money. Several hypotheses are developed to be tested. Among them, it is hypothesised that novelty hinders short term performance in the venture creation process. On the other hand knowledge and resource relatedness are hypothesised to promote performance. An experimental study was required in order to understand how different types and degrees of novelty and relatedness of venture ideas affect the attractiveness of venture ideas in the eyes of experienced entrepreneurs. Thus, the empirical work in this thesis was based on two separate studies. In the first one, a conjoint analysis experiment was conducted on 32 experienced entrepreneurs in order to ascertain attitudinal preferences regarding venture idea attractiveness based on novelty, relatedness and potential financial gains. This helped to estimate utility values for different levels of different attributes of venture ideas and their relative importance in the attractiveness. The second study was a longitudinal investigation of how venture idea novelty and relatedness affect the performance in the venture creation process. The data for this study is from the Comprehensive Australian Study for Entrepreneurial Emergence (CAUSEE) project that has been established in order to explore the new venture creation process in Australia. CAUSEE collects data from a representative sample of over 30,000 households in Australia using random digit dialling (RDD) telephone interviews. From these cases, data was collected at two points in time during a 12 month period from 493 firms, who are currently involved in the start-up process. Hypotheses were tested and inferences were derived through descriptive statistics, confirmatory factor analysis and structural equation modelling. Results of study 1 indicate that venture idea characteristics have a role in the attractiveness and entrepreneurs prefer to introduce a moderate degree of novelty across all types of venture ideas concerned. Knowledge relatedness is demonstrated to be a more significant factor in attractiveness than resource relatedness. Results of study 2 show that the novelty hinders nascent venture performance. On the other hand, resource relatedness has a positive impact on performance unlike knowledge relatedness which has none. The results of these studies have important implications for potential entrepreneurs, investors, researchers, consultants etc. by developing a better understanding in the venture creation process and its success factors in terms of both theory and practice.
Resumo:
Hydrotalcite and thermally activated hydrotalcites were examined for their potential as methods for the removal of oxalate anions from Bayer Process liquors. Hydrotalcite was prepared and characterised by a number of methods, including X-ray diffraction, thermogravimetric analysis, nitrogen adsorption analysis and vibrational spectroscopy. Thermally activated hydrotalcites were prepared by a low temperature method and characterised using X-ray diffraction, nitrogen adsorption analysis and vibrational spectroscopy. Oxalate intercalated hydrotalcite was prepared by two methods and analysed with X-ray diffraction and for the first time thermogravimetric analysis, Raman spectroscopy and infrared emission spectroscopy. The adsorption of oxalate anions by hydrotalcite and thermally activated hydrotalcite was tested in a range of solutions using both batch and kinetic adsorption models.
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such microcalibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, lane distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.
Resumo:
Project selection is a decision-making process that is not merely influenced by technical aspects but also by the people who involved in the process. Organisational culture is described as a set of values and norms that are shared by people within the organisation that affects the way they interact with each other and with stakeholders from outside the organisation. The aim of this paper is to emphasize the importance of organisational culture on improving the quality of decisions in the project selection process, in addition to the influence of technical aspects of a project. The discussion is based on an extensive literature review and, as such, represents the first part of a research agenda investigating the impact of organisational culture on the project selection process applicable specifically to road infrastructure contracts. Four existing models of organisational culture (Denison 1990; Cameron and Quinn 2006; Hofstede 2001; Glaser et al 1987) are discussed and reviewed in view of their use in the larger research project to investigate the impact of culture on identified critical elements of decision-making. An understating of the way organisational culture impacts on project selection will increase the likelihood in future of relevant government departments selecting projects that achieve their stated organisational goals.
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such micro-calibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, land distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.