532 resultados para Power factor correction
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
Endoscopic scoliosis correction plays an important part in the surgical options available for treating adolescent idiopathic scoliosis. However, there is a paucity of literature examining optimum methods of analgesia following this type of surgery. The role of intrapleural analgesia is examined and described. In this study, local anaesthetic administration via an intrapleural catheter was found to be a safe and effective method of analgesia following endoscopic scoliosis correction. Post-operative pain following anterior scoliosis correction can be reduced to ‘mild’ levels by combined analgesia regimes. Surgeons may wish to expand its use into open or minimally invasive anterior scoliosis correction or anterior releases.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
In deregulated versions of free-market electricity, producers will be free to send power along other utilities. The price of power strongly depends and fluctuates according to mutual benefit index of both supplier and consumer. In such a situation, strong interaction among utilities may cause instabilities in the system. As the frequency of market-based dispatch increases market forces tend to destabilize the stable system dynamics depending on the value of Ks/τλ(market dependent parameter) ratio. This tends to destabilize the coupled dynamics. The implementation of TCSC can effectively damp the inter area modes of oscillations of the coupled market system.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated
Resumo:
This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.
Resumo:
In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.
Resumo:
Research shows that Indigenous Australians suspicion and fear of being ‘locked up’ may influence mental health service avoidance. Given this, the aim of this study was to explore, by qualitative analysis of in depth interviews (N = 3), how three Indigenous people experienced the controversial practice of seclusion Hans-Georg Gadamer’s phenomenology guided analysis of the material, and allowed narrated experiences to be understood within their cultural and historical context. Participants viewed seclusion negatively: police involvement in psychiatric care; perceptions of being punished and powerless; occasions of extreme use of force; and lack of care were prominent themes throughout the interviews. While power imbalances inherent in seclusion are problematic for all mental health clients, the distinguishing factor in the Indigenous clients’ experience is that seclusion is continuous with the discriminatory and degrading treatment by governments, police and health services that many Indigenous people have experienced since colonisation. The participants’ experiences echoed Goffman’s (1961) findings that institutional practices act to degrade and dehumanise clients whose resulting conformity eases the work of nursing staff. While some nurses perceive that seclusion reduces clients’ agitation (Meehan, Bergen & Fjeldsoe, 2004; Wynaden et al., 2001), one must ask at what cost to clients’ dignity, humanity and basic human rights.
Resumo:
Background: The 30-item USDI is a self-report measure that assesses depressive symptoms among university students. It consists of three correlated three factors: Lethargy, Cognitive-Emotional and Academic motivation. The current research used confirmatory factor analysis to asses construct validity and determine whether the original factor structure would be replicated in a different sample. Psychometric properties were also examined. Method: Participants were 1148 students (mean age 22.84 years, SD = 6.85) across all faculties from a large Australian metropolitan university. Students completed a questionnaire comprising of the USDI, the Depression Anxiety Stress Scale (DASS) and Life Satisfaction Scale (LSS). Results: The three correlated factor model was shown to be an acceptable fit to the data, indicating sound construct validity. Internal consistency of the scale was also demonstrated to be sound, with high Cronbach Alpha values. Temporal stability of the scale was also shown to be strong through test-retest analysis. Finally, concurrent and discriminant validity was examined with correlations between the USDI and DASS subscales as well as the LSS, with sound results contributing to further support the construct validity of the scale. Cut-off points were also developed to aid total score interpretation. Limitations: Response rates are unclear. In addition, the representativeness of the sample could be improved potentially through targeted recruitment (i.e. reviewing the online sample statistics during data collection, examining the representativeness trends and addressing particular faculties within the university that were underrepresented). Conclusions: The USDI provides a valid and reliable method of assessing depressive symptoms found among university students.
Resumo:
This paper investigates the critical role of knowledge sharing (KS) in leveraging manufacturing activities, namely integrated supplier management (ISM) and new product development (NPD) to improve business performance (BP) within the context of Taiwanese electronic manufacturing companies. The research adopted a sequential mixed method research design, which provided both quantitative empirical evidence as well as qualitative insights, into the moderating effect of KS on the relationships between these two core manufacturing activities and BP. First, a questionnaire survey was administered, which resulted in a sample of 170 managerial and technical professionals providing their opinions on KS, NPD and ISM activities and the BP level within their respective companies. On the basis of the collected data, factor analysis was used to verify the measurement model, followed by correlation analysis to explore factor interrelationships, and finally moderated regression analyses to extract the moderating effects of KS on the relationships of NPD and ISM with BP. Following the quantitative study, six semi-structured interviews were conducted to provide qualitative in-depth insights into the value added from KS practices to the targeted manufacturing activities and the extent of its leveraging power. Results from quantitative statistical analysis indicated that KS, NPD and ISM all have a significant positive impact on BP. Specifically, IT infrastructure and open communication were identified as the two types of KS practices that could facilitate enriched supplier evaluation and selection, empower active employee involvement in the design process, and provide support for product simplification and the modular design process, thereby improving manufacturing performance and strengthening company competitiveness. The interviews authenticated many of the empirical findings, suggesting that in the contemporary manufacturing context KS has become an integral part of many ISM and NPD activities and when embedded properly can lead to an improvement in BP. The paper also highlights a number of useful implications for manufacturing companies seeking to leverage their BP through innovative and sustained KS practices.
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.