446 resultados para Open-air museums
Resumo:
Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.
Resumo:
Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.
Packed bed bioreactor for the isolation and expansion of placental-derived Mesenchymal Stromal Cells
Resumo:
Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.
Resumo:
Delayed-onset muscle soreness, or ‘DOMS’, affects many people after exercise and can impair future performance. It usually peaks one to four days after exercise and several strategies are used to overcome it. The effectiveness and safety of many of these strategies applied and promoted is unknown.
Resumo:
This paper focuses on the advantages of Open Access, (OA) particularly from the point of view of individual researchers, research centres and disciplines, and institutions. The advantage described by the phrase “OA advantage”, is multifaceted. The experience of Queensland University of Technology in Australia in pioneering OA as preferred practice in an institution with a growing research profile and energy, has seen evidence of the OA advantage develop in the experience of our researchers. The University has witnessed the development of practical evidence about improved recognition and impact, and this has occurred in the context of sector wide activity and policy where fresh approaches and leadership will result in even greater rewards for researchers whose outputs are “in the open”.
Resumo:
This thesis addresses audience engagement challenges during professional mainstream ballet and contemporary dance company performances by examining spectator-dancer relationships. Focusing on the open rehearsal as an audience engagement tool, this project presents a new line of enquiry in dance reception studies. The findings signify that open rehearsal attendance can contribute to more meaningful and enjoyable performance experiences for audience members by opening up the possibility of different relationships with dancers.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
Numerical predictions are obtained for laminar natural convection of air in a square two dimensional cavity at high Rayleigh numbers. Proper resolution of the core reveals weak multi-cellular structure which varies in a complex manner as the effects of convection are increased. The end of the steady laminar regime is numerically estimated to occur at Ra=2.2x10^8.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
In the last thirty years, ethnic museums have mushroomed in American cities. Although this is certainly a national phenomenon, it has been particularly evident in Los Angeles. In this paper we examine the genesis and evolution of these emerging institutions. We survey the mission, scope, and role of ethnic museums in Los Angeles, and we contrast them with the stated mission and scope of “mainstream” museums in the city. We further present case studies of three Los Angeles ethnic museums. The museums vary considerably in the ways they perceive their role in the community, the city, and the nation and in the preservation and display of ethnic culture. At their best, ethnic museums serve to make new art and histories more accessible and visible and provide a forum in which to debate contemporary issues of politics and identity. The paper highlights some of the tensions faced by ethnic museums as they seek to define their audience and role(s) in multi-ethnic, twenty-first century Los Angeles.
Resumo:
Rapid growth in the global population requires expansion of building stock, which in turn calls for increased energy demand. This demand varies in time and also between different buildings, yet, conventional methods are only able to provide mean energy levels per zone and are unable to capture this inhomogeneity, which is important to conserve energy. An additional challenge is that some of the attempts to conserve energy, through for example lowering of ventilation rates, have been shown to exacerbate another problem, which is unacceptable indoor air quality (IAQ). The rise of sensing technology over the past decade has shown potential to address both these issues simultaneously by providing high–resolution tempo–spatial data to systematically analyse the energy demand and its consumption as well as the impacts of measures taken to control energy consumption on IAQ. However, challenges remain in the development of affordable services for data analysis, deployment of large–scale real–time sensing network and responding through Building Energy Management Systems. This article presents the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large–scale deployment and identifies the research gaps that should be closed by future investigations.
Resumo:
Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.
Resumo:
Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
Corporate executives require relevant and intelligent business information in real-time to take strategic decisions. They require the freedom to access this information anywhere and anytime. There is a need to extend this functionality beyond the office and on the fingertips of the decision makers. Mobile Business Intelligence Tool (MBIT) aims to provide these features in a flexible and cost-efficient manner. This paper describes the detailed architecture of MBIT to overcome the limitations of existing mobile business intelligence tools. Further, a detailed implementation framework is presented to realize the design. This research highlights the benefits of using service oriented architecture to design flexible and platform independent mobile business applications. © 2009 IEEE.