495 resultados para Biological Monitoring
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
This thesis examined the use of acoustic sensors for monitoring avian biodiversity. Acoustic sensors have the potential to significantly increase the spatial and temporal scale of ecological observations, however acoustic recordings of the environment can be opaque and complex. This thesis developed methods for analysing large volumes of acoustic data to maximise the detection of bird species, and compared the results of acoustic sensor biodiversity surveys with traditional bird survey techniques.
Resumo:
Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
Resumo:
The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.
Resumo:
Public buildings and large infrastructure are typically monitored by tens or hundreds of cameras, all capturing different physical spaces and observing different types of interactions and behaviours. However to date, in large part due to limited data availability, crowd monitoring and operational surveillance research has focused on single camera scenarios which are not representative of real-world applications. In this paper we present a new, publicly available database for large scale crowd surveillance. Footage from 12 cameras for a full work day covering the main floor of a busy university campus building, including an internal and external foyer, elevator foyers, and the main external approach are provided; alongside annotation for crowd counting (single or multi-camera) and pedestrian flow analysis for 10 and 6 sites respectively. We describe how this large dataset can be used to perform distributed monitoring of building utilisation, and demonstrate the potential of this dataset to understand and learn the relationship between different areas of a building.
Resumo:
In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. ’For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: ’There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as ’novelty', ’inventive step', and ’utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the ’Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.
Resumo:
Background An important potential clinical benefit of using capnography monitoring during procedural sedation and analgesia (PSA) is that this technology could improve patient safety by reducing serious sedation-related adverse events, such as death or permanent neurological disability, which are caused by inadequate oxygenation. The hypothesis is that earlier identification of respiratory depression using capnography leads to a change in clinical management that prevents hypoxaemia. As inadequate oxygenation/ventilation is the most common reason for injury associated with PSA, reducing episodes of hypoxaemia would indicate that using capnography would be safer than relying on standard monitoring alone. Methods/design The primary objective of this review is to determine whether using capnography during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). A secondary objective of this review is to determine whether changes in the clinical management of sedated patients are the mediating factor for any observed impact of capnography monitoring on the rate of hypoxaemia. The potential adverse effect of capnography monitoring that will be examined in this review is the rate of inadequate sedation. Electronic databases will be searched for parallel, crossover and cluster randomised controlled trials comparing the use of capnography with standard monitoring alone during PSA that is administered in the hospital setting. Studies that included patients who received general or regional anaesthesia will be excluded from the review. Non-randomised studies will be excluded. Screening, study selection and data extraction will be performed by two reviewers. The Cochrane risk of bias tool will be used to assign a judgment about the degree of risk. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of capnography monitoring during PSA within hospital settings. Systematic review registration: PROSPERO CRD42015023740
Resumo:
For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech. This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
Resumo:
In order to evaluate the capability of 1H MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N- acetylaspartylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mI, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mI and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel.
Resumo:
Soundscape assessment has been proposed as a remote ecological monitoring tool for measuring biodiversity, but few studies have examined how soundscape patterns vary with landscape configuration and condition. The goal of our study was to examine a suite of published acoustic indices to determine whether they provide comparable results relative to varying levels of landscape fragmentation and ecological condition in nineteen forest sites in eastern Australia. Our comparison of six acoustic indices according to time of day revealed that two indices, the acoustic complexity and the bioacoustic index, presented a similar pattern that was linked to avian song intensity, but was not related to landscape and biodiversity attributes. The diversity indices, acoustic entropy and acoustic diversity, and the normalized difference soundscape index revealed high nighttime sound, as well as a dawn and dusk chorus. These indices appear to be sensitive to nocturnal biodiversity which is abundant at night in warm, subtropical environments. We argue that there is need to better understand temporal partitioning of the soundscape by specific taxonomic groups, and this should involve integrated research on amphibians, insects and birds during a 24 h cycle. The three indices that best connected the soundscape with landscape characteristics, ecological condition and bird species richness were acoustic entropy, acoustic evenness and the normalized difference soundscape index. This study has demonstrated that remote soundscape assessment can be implemented as an ecological monitoring tool in fragmented Australian forest landscapes. However, further investigation should be dedicated to refining and/or combining existing acoustic indices and also to determine if these indices are appropriate in other landscapes and for other survey purposes.
Resumo:
This paper presents the results of a research project aimed at examining the capabilities and challenges of two distinct but not mutually exclusive approaches to in-service bridge assessment: visual inspection and installed monitoring systems. In this study, the intended functionality of both approaches was evaluated on its ability to identify potential structural damage and to provide decision-making support. Inspection and monitoring are compared in terms of their functional performance, cost, and barriers (real and perceived) to implementation. Both methods have strengths and weaknesses across the metrics analyzed, and it is likely that a hybrid evaluation technique that adopts both approaches will optimize efficiency of condition assessment and ultimately lead to better decision making.
Resumo:
This book documents and evaluates the dramatic expansion of intellectual property law to accommodate various forms of biotechnology from micro-organisms, plants, and animals to human genes and stem cells. It makes a unique theoretical contribution to the controversial public debate over the commercialization of biological inventions. The author also considers the contradictions between the Supreme Court of Canada rulings in respect of the Harvard oncomouse, and genetically modified canola. He explores law, policy, and practice in both Australia and New Zealand in respect to gene patents and non-coding DNA. This study charts the rebellion against the European Union Biotechnology Directive – particularly in respect of Myriad Genetics’ BRCA1 and BRCA2 patents, and stem cell patent applications. The book also considers whether patent law will accommodate frontier technologies – such as bioinformatics, haplotype mapping, proteomics, pharmacogenomics, and nanotechnology. Intellectual Property and Biotechnology will be of prime interest to lawyers and patent attorneys, scientists and researchers, business managers and technology transfer specialists.
Resumo:
Objectives: There is little evidence and few guidelines to inform the most appropriate dosing and monitoring for antimicrobials in the ICU. We aimed to survey current practices around the world. Methods: An online structured questionnaire was developed and sent by e-mail to obtain information on local antimicrobial prescribing practices for glycopeptides, piperacillin/tazobactam, carbapenems, aminoglycosides and colistin. Results: A total of 402 professionals from 328 hospitals in 53 countries responded, of whom 78% were specialists in intensive care medicine (41% intensive care, 30% anaesthesiology, 14% internal medicine) and 12% were pharmacists. Vancomycin was used as a continuous infusion in 31% of units at a median (IQR) daily dose of 25 (25–30) mg/kg. Piperacillin/tazobactam was used as an extended infusion by 22% and as a continuous infusion by 7%. An extended infusion of carbapenem (meropenem or imipenem) was used by 27% and a continuous infusion by 5%. Colistin was used at a daily dose of 7.5 (3.9–9) million IU (MIU)/day, predominantly as a short infusion. The most commonly used aminoglycosides were gentamicin (55%) followed by amikacin (40%), with administration as a single daily dose reported in 94% of the cases. Gentamicin was used at a daily dose of 5 (5–6) mg/day and amikacin at a daily dose of 15 (15–20) mg/day. Therapeutic drug monitoring of vancomycin, piperacillin/tazobactam and meropenem was used by 74%, 1% and 2% of the respondents, respectively. Peak aminoglycoside concentrations were sampled daily by 28% and trough concentrations in all patients by 61% of the respondents. Conclusions: We found wide variability in reported practices for antibiotic dosing and monitoring. Research is required to develop evidence-based guidelines to standardize practices.